Notice: This is an archived and unmaintained page. For current information, please browse astrobiology.nasa.gov.

2010 Annual Science Report

Astrobiology Roadmap Objective 3.3 Reports Reporting  |  SEP 2009 – AUG 2010

Project Reports

  • AIRFrame Technical Infrastructure and Visualization Software Evaluation

    The Astrobiology Integrative Research Framework (AIRFrame) analyzes published and unpublished documents to identify and visualize implicit relationships between astrobiology’s diverse constituent fields. The main goal of the AIRFrame project is to allow researchers and the public to discover and navigate across related information from different disciplines.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • AbGradCon 2010

    The Astrobiology Graduate Student conference is a conference organized by astrobiology graduate students for astrobiology grad students. It provides a comfortable peer forum in which to communicate and discuss research progress and ideas.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Task 1.1.2 Models of the Internal Dynamics: Formation of Liquids in the Subsurface and Relationships With Cryovolcanism

    The rate of the heat flow through the Titan ice crust sets a limit on how long water can exist in liquid form on the surface of Titan

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Habitability of Icy Worlds

    Habitability of Icy Worlds investigates the habitability of liquid water environments in icy worlds, with a focus on what processes may give rise to life, what processes may sustain life, and what processes may deliver that life to the surface. Habitability of Icy Worlds investigation has three major objectives. Objective 1, Seafloor Processes, explores conditions that might be conducive to originating and supporting life in icy world interiors. Objective 2, Ocean Processes, investigates the formation of prebiotic cell membranes under simulated deep-ocean conditions, and Objective 3, Ice Shell Processes, investigates astrobiological aspects of ice shell evolution.

    ROADMAP OBJECTIVES: 1.1 2.1 2.2 3.1 3.2 3.3 3.4 4.1 5.1 5.3 6.1 6.2 7.1 7.2
  • Task 1.2 Interaction of Methane/ethane With Water Ice

    The extent to which hydrocarbon liquids interact with the bedrock water ice sets the stage for reactions leading to the formation of prebiotic oxygen-containing organic compounds on the Titan surface.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Minerals to Enzymes: The Path to CO Dehydrogenase/Acetyl – CoA Synthase

    The relationship between structure and reactivity of iron-sulfur minerals and the active sites of iron-sulfur enzymes is too strong to be coincidental. We and others have proposed that the emergence and genesis of iron-sulfur cluster enzymes occurred by a stepwise process in which mineral motifs were first nested in simple organic polymers and then in response to selective pressure evolved specific gene encoded protein nest that confer high specific enzyme activities. We are examining this hypothesis through nesting NiFeS motifs in a variety of organic nest and examining the structural determinants of reactivity.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 3.4 7.1 7.2
  • Bioastronomy 2007 Meeting Proceedings

    This is the published volume of material from an astrobiology meeting hosted by our lead team in 2007 in San Juan Puerto Riceo. The book includes 60 papers covering the breadth of astrobiology, and developed a new on-line astrobiology glossary.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Task 2.1.1 Master Atmospheric Chemistry Simulation

    The master atmospheric chemistry model will contribute to the understanding of the extent to which organic chemistry in atmospheric processes produces complex compounds.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Molecular Paleontology of Iron-Sulfur Enzymes

    In this project we are attempting to trace back in the evolutionary record using specific genetic events as markers. We are using specific gene fusion and gene duplication events in the genetic record to place a chronological sequence to the advent of nitrogen fixation, certain modes of hydrogen metabolism, and both anoxygenic and oxygenic photosynthesis.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 3.4 4.1 5.1 5.2 5.3 6.1
  • Task 2.1.2.1 Atmospheric State and Dynamics

    The physical conditions in the Titan atmosphere set the context for the formation of organic compounds in the atmosphere.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Task 2.1.2.2 Atmospheric Observations

    The observed organic haze in the Titan atmosphere is a result of abiotic atmospheric synthesis chemical processes.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • PHL 278: A Gateway Course for a Minor in Astrobiology

    We have recently developed obtained Montana Board of Regents for an undergraduate minor in Astrobiology at Montana State University. The Minor includes courses in Earth Sciences, Physics, Astronomy, Microbiology, Ecology, Chemistry, and Philosophy. Two new courses have been developed as part of the minor, one of which is a gateway or introductory course examines the defining characteristics of life on earth as well as the challenges of a science that studies life and its origin. The other course which will be offered fall 2011 is the capstone course for the minor which will delved into the science of Astrobiology in more detail and targeted for Juniors and Seniors that have fulfilled the majority of the requisite course requirements for the curriculum.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Computational Astrobiology Summer School

    The Computational Astrobiology Summer School (CASS) is an excellent opportunity for graduate students in computer science and related areas to learn about astrobiology, and to carry out substantial projects related to the field.

    The two-week on-site part of the program is an intensive introduction to the field of astrobiology. NASA Astrobiology Institute scientists present their work, and the group discusses ways in which computational tools (e.g. models, simulations, data processing applications, sensor networks, etc.) could improve astrobiology research. Also during this time, participants define their projects, with the help of the participating NAI researchers. On returning to their home institutions, participants work on their projects, under the supervision of a mentor, with the goal of presenting their completed projects at an astrobiology-related conference the following year.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Task 2.2.1 Characterization of Aerosol Nucleation and Growth

    Laboratory experiments of aerosol formation in the Titan atmosphere provide input to model simulations of atmospheric processes that can lead to the formation of large organic compounds.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Radical SAM Enzyme Functional Diversity and Evolution

    The role of radical generating iron-sulfur enzymes in making modification to iron-sulfur motifs in biology are key to the maturation of nitrogen fixing and hydrogen oxidizing enyzme activities. These enzymes act through a mechanism analogous to what has been termed ligand assisted catalysis in discussions of tuning the reactivity of iron sulfur mineral motifs before the advent of life. This strong parallel between biological and abiotic processes provides a basis to better understand the transition from prebiotic chemistry to biochemistry or the transition from the nonliving to the living EArth.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 3.4
  • Task 2.2.2.1 Ultraviolet/infrared Spectroscopy of Ice Films

    These experiments explore to what extent long wavelength photons, the main solar radiation penetrating deep into the Titan atmosphere, can initiate chemical reactions in Titan atmospheric ices.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Project 2D: Tectonic Hydrogen Production Through Piezoelectrochemical Effect, a New Mechanism for the Direct Conversion of Mechanical Energy to Chemical Energy by Deforming Piezoelectric Minerals in Water

    A decade ago, environmental microbiologists put forth the radical proposal that the Earth may contain a deep biosphere, where microorganisms may live several kilometers deep within the Earth, effectively isolated from the surface biosphere. This in turn has important implications for our search for life elsewhere in the universe. A key issue of this proposal is how could such life sustain itself? We propose a mechanism of Piezoelectrochemical Effect for the direct conversion of mechanical energy to chemical energy. This phenomenon is capable of hydrogen and oxygen via direct-water decomposition by means of as-synthesized quartz and other piezoelectric micro-crystals. Deformation of the piezoelectric crystals will lead to strain-induced electric charges development on crystals surfaces. With sufficient electric potential, strained piezoelectric crystals in water triggered the redox reaction of water to produce hydrogen and oxygen gases. This study provides a new insight for generating tectonic hydrogen for sustaining sub-surface microorganisms through deforming piezoelectric minerals like quartz in geological environments, and it may be an important process for sustaining the deep biosphere on Earth.

    ROADMAP OBJECTIVES: 3.3 4.1
  • Rationalized Chemical Surface Modifications

    Using biological examples such as nitrogen fixation by nitrogenase, hydrogen evolution and uptake by hydrogenases, and reversible CO/CO2 conversion by CO dehydrogenase, we began to study the effect of heterometal (Mo, V, Ni) substitution in iron-sulfur minerals and particles. We have successfully bound molybdenum sulfide on pyrite mineral surfaces and exploring the synthetic feasibility of doping Ni into freshly precipitated FeS particles. Preliminary reactivity studies indicated higher yields in formation of ammonia from nitrogen oxides at hydrothermal conditions relative to the pure iron-sulfur systems.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 7.1 7.2
  • Structure, Reactivity, and Biosynthesis of Cataylic Iron-Sulfur Clusters

    We are examining the biosynthesis of complex iron-sulfur cluster to determine the specific chemistry associated with modifying iron-sulfur motifs in biology for different functions. We then relate the chemistry associated with these modifying reactions to reactions that could potentially modify iron-sulfur mineral motifs in the early non-living Earth to promote analogous reactivity.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 3.4 4.1 7.1 7.2
  • Task 2.2.2.3 Aerosol Photoprocessing and Analysis

    A laboratory device is being constructed to simulate the condensation of aerosols in Titan’s atmosphere for exploring the possible effects of exposure of these aerosols to solar radiation.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Task 3.1.1 Reactions of Organics With Ices and Mineral Grains

    Chemistry catalyzed by mineral grains on the Titan surface, for example a result of meteoritic infall, might lead to the formation of prebiotic compounds resulting from the insertion of oxygen into organic compounds of atmospheric origin.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Task 3.1.2 Heterogeneous Chemistry

    There are a variety of heterogenous surface chemical processes possible in the Titan environment that can be simulated in laboratory experiments to determine how effective each may be in leading to the synthesis of prebiotic chemistry.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Surface Chemistry on Iron-Sulfur Minerals

    Progress has been made in defining competitive abiotic pathways for reducing nitrogen compounds to ammonia from nitrogen oxides relative to the dinitrogen. Using pyrite mineral surfaces and freshly precipitated Fe-S particles, we showed that under hydrothermal conditions nitrite (NO2-), nitrate (NO3-), as well as nitric oxide (NO) can be converted to ammonia to comparable yields than starting from dinitrogen (N2). Formation of ammonia or ammonium ion in aqueous solution is considered as an essential step toward creating amino acids that are key building blocks of life.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 7.1 7.2
  • Task 3.3.1 Solubility of Organics in Methane

    The first step in understanding what chemistry might occur in the Titan lakes requires understanding the degree to which organics can actually dissolve in liquid hydrocarbons.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Task 3.3.2 Solubility in Lakes

    The solubility of organics in hydrocarbon lakes is a key limiting factor to the extent of chemistry that can occur in Titan lakes.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Virtual Catalysis From Molecular Beam Scattering

    Molecular beam/surface scattering experiments provide a controlled environment for modeling abiotic processes at the interface of lytho- and atmosphere. Specifically, it has been proposed that exposed rock surfaces may have played a role in modifying activated atmospheric molecules in the presence of UV radiation toward the building blocks of life. We have found that extended exposure of pyrite mineral surfaces to hydrogen atoms creates a reduced iron surface. The reduced state and the modified geometric structure of the surface iron atoms were confirmed by X-ray spectroscopy. Furthermore, this modified pyrite surface shows remarkable chemical reactivity in converting the hyperthermal beam of N2 to ammonia.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 7.1 7.2
  • Task 3.4 Tholin Chemical Analysis

    New techniques need to be developed to characterize the chemical composition of tholins at the molecular structural level.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • X-Ray Characterization of Modified Fe-S Mineral Surfaces

    High energy X-ray radiations generated by tunable synchrotron lightsources were used to characterize both the location of the electrons and the atomic centers in modified Fe-S minerals and particles. We have exploited the complementary information content of three different detections techniques in both soft and hard X-ray energy range. We confirmed the formation of a reduced pyrite structure from hydrogen atom exposure experiments. The formation of a reduced pyrite surface is relevant to small molecule activation processes of abiotic molecules toward formation of more complex molecules, such as amino and nucleic acids.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 7.1 7.2
  • Task 3.5 Titan Genetics

    This project addresses the question of how complex molecules might be formed in liquid hydrocarbons, rather than liquid water.

    ROADMAP OBJECTIVES: 1.1 3.1 3.2 3.3
  • The Commonality of Life in the Universe

    This research considers under what conditions and where in the Universe Titan might be habitable.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Quantification of the Disciplinary Roots of Astrobiology

    While astrobiology is clearly an interdisciplinary science, this project seeks to address the question of how interdisciplinary it is. We are reviewing published works across a broad range of scholarly databases, comparing disciplinary indicators such as subject terms, journal titles and author affiliations, and creating a computational model to identify and compare the makeup of astrobiological research literature in terms of the proportion of work that come from constituent fields.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2