A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
February 2024Axisymmetric High Spot Coverage on Exoplanet Host HD 189733 A

Narrett, I. S., Rackham, B. V., & Wit, J. d. (2024). Axisymmetric High Spot Coverage on Exoplanet Host HD 189733 A. The Astronomical Journal, 167(3), 107. doi:10.3847/1538-3881/ad1f6c

Atmospheric Loss in Giant Impacts Depends on Preimpact Surface Conditions

Lock, S. J., & Stewart, S. T. (2024). Atmospheric Loss in Giant Impacts Depends on Preimpact Surface Conditions. The Planetary Science Journal, 5(2), 28. doi:10.3847/psj/ad0b16

Near-Infrared Vibrational Frequencies of HCN, HNC, and CN in N2 and Ar Ice Matrices

Fayolle, R. C., Johnson, P. V., Hodyss, R., Zhang, X., Sander, S. P. (2024) Near-Infrared Vibrational Frequencies of HCN, HNC, and CN in N2 and Ar Ice Matrices. ACS Earth and Space Chemistry. doi: 10.1021/acsearthspacechem.3c00287

The H-poor nature of incompletely melted planetesimals: The view from acapulcoites and lodranites

Peterson, L. D., Newcombe, M. E., Alexander, C. M.O'D., Wang, J., Nielsen, S. G. (2024) The H-poor nature of incompletely melted planetesimals: The view from acapulcoites and lodranites. Geochimica et Cosmochimica Acta. doi: 10.1016/j.gca.2024.02.002

Eccentricity Distribution beyond the Snow Line and Implications for Planetary Habitability

R. Kane, S. R., Wittenmyer, R. A. (2024). Eccentricity Distribution beyond the Snow Line and Implications for Planetary Habitability. The Astrophysical Journal Letters, 962(1).. doi: 10.3847/2041-8213/ad2463

January 2024Re‐Assessing the Need for Apatite‐ and Dolomite‐Specific Calibrations of the Carbonate Clumped Isotope Thermometer

Anderson, N. T., Bonifacie, M., Jost, A. B., Siebert, J., Bontognali, T., Horita, J., … Bergmann, K. D. (2024). Re‐Assessing the Need for Apatite‐ and Dolomite‐Specific Calibrations of the Carbonate Clumped Isotope Thermometer. Geochemistry, Geophysics, Geosystems, 25(1), None. doi:10.1029/2023gc011049

Metal-binding amino acid ligands commonly found in metalloproteins differentially fractionate copper isotopes

Selden, C. R., Schilling, K., Godfrey, L., & Yee, N. (2024). Metal-binding amino acid ligands commonly found in metalloproteins differentially fractionate copper isotopes. Scientific Reports, 14(1), None. doi:10.1038/s41598-024-52091-7

Global oceanic oxygenation controlled by the Southern Ocean through the last deglaciation

Wang, Y., Costa, K. M., Lu, W., Hines, S. K. V., & Nielsen, S. G. (2024). Global oceanic oxygenation controlled by the Southern Ocean through the last deglaciation. Science Advances, 10(3), None. doi:10.1126/sciadv.adk2506

Energy yields for acetylenotrophy on Enceladus and Titan

Yanez, M. D., LaRowe, D. E., Cable, M. L., & Amend, J. P. (2024). Energy yields for acetylenotrophy on Enceladus and Titan. Icarus, None, 115969. doi:10.1016/j.icarus.2024.115969

Empirically Constraining the Spectra of Stellar Surface Features Using Time-resolved Spectroscopy

Berardo, D., De Wit, J., & Rackham, B. V. (2024). Empirically Constraining the Spectra of Stellar Surface Features Using Time-resolved Spectroscopy. The Astrophysical Journal Letters, 961(1), L18. doi:10.3847/2041-8213/ad1b5b