A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
October 2010Extraterrestrial amino acids in the Almahata Sitta meteorite

Glavin, D. P., Aubrey, A. D., Callahan, M. P., Dworkin, J. P., Elsila, J. E., Parker, E. T., … Bada, J. L. (2010). Meteoritics & Planetary Science, 45(10-11), 1695–1709. doi:10.1111/j.1945-5100.2010.01094.x

Mercury's weak magnetic field: A result of magnetospheric feedback?

Gómez-Pérez, N., & Solomon, S. C. (2010). Geophysical Research Letters, 37(20), n/a–n/a. doi:10.1029/2010gl044533

microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate

Heimberg, A. M., Cowper-Sal{middle Dot}lari, R., Semon, M., Donoghue, P. C. J., & Peterson, K. J. (2010). Proceedings of the National Academy of Sciences, 107(45), 19379–19383. doi:10.1073/pnas.1010350107

The Impact of Conservation on the Status of the World's Vertebrates

Hoffmann, M., Hilton-Taylor, C., Angulo, A., Bohm, M., Brooks, T. M., Butchart, S. H. M., … Carpenter, K. E. (2010). Science, 330(6010), 1503–1509. doi:10.1126/science.1194442

The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters

Howard, A. W., Marcy, G. W., Johnson, J. A., Fischer, D. A., Wright, J. T., Isaacson, H., … Valenti, J. A. (2010). Science, 330(6004), 653–655. doi:10.1126/science.1194854

A NETWORK-THEORETICAL APPROACH TO UNDERSTANDING INTERSTELLAR CHEMISTRY

Jolley, C. C., & Douglas, T. (2010). The Astrophysical Journal, 722(2), 1921–1931. doi:10.1088/0004-637x/722/2/1921

Thermally-induced chemistry and the Jovian icy satellites: A laboratory study of the formation of sulfur oxyanions

Loeffler, M. J., & Hudson, R. L. (2010). Geophysical Research Letters, 37(19), n/a–n/a. doi:10.1029/2010gl044553

TRENDS IN 44 Ti AND 56 Ni FROM CORE-COLLAPSE SUPERNOVAE

Magkotsios, G., Timmes, F. X., Hungerford, A. L., Fryer, C. L., Young, P. A., & Wiescher, M. (2010). The Astrophysical Journal Supplement Series, 191(1), 66–95. doi:10.1088/0067-0049/191/1/66

A PATCHY CLOUD MODEL FOR THE L TO T DWARF TRANSITION

Marley, M. S., Saumon, D., & Goldblatt, C. (2010). The Astrophysical Journal, 723(1), L117–L121. doi:10.1088/2041-8205/723/1/l117

Catalytic peptide hydrolysis by mineral surface: Implications for prebiotic chemistry

Marshall-Bowman, K., Ohara, S., Sverjensky, D. A., Hazen, R. M., & James Cleaves, H. (2010). Geochimica et Cosmochimica Acta, 74(20), 5852–5861. doi:10.1016/j.gca.2010.07.009