A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
October 2012Chemical heterogeneity on Mercury's surface revealed by the MESSENGER X-Ray Spectrometer

Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., … Denevi, B. W. (2012). Journal of Geophysical Research: Planets, 117(E12), n/a–n/a. doi:10.1029/2012je004153

September 2012COMETARY VOLATILES AND THE ORIGIN OF COMETS

A'Hearn, M. F., Feaga, L. M., Keller, H. U., Kawakita, H., Hampton, D. L., Kissel, J., … Klaasen, K. P. (2012). The Astrophysical Journal, 758(1), 29. doi:10.1088/0004-637x/758/1/29

Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system

Anderson, R. E., Beltrán, M. T., Hallam, S. J., & Baross, J. A. (2012). FEMS Microbiology Ecology, 83(2), 324–339. doi:10.1111/j.1574-6941.2012.01478.x

WISE /NEOWISE PRELIMINARY ANALYSIS AND HIGHLIGHTS OF THE 67P/CHURYUMOV-GERASIMENKO NEAR NUCLEUS ENVIRONS

Bauer, J. M., Kramer, E., Mainzer, A. K., Stevenson, R., Grav, T., Masiero, J. R., … Walker, R. G. (2012). The Astrophysical Journal, 758(1), 18. doi:10.1088/0004-637x/758/1/18

Redox redux

Beratan, D. N., & Onuchic, J. N. (2012). Physical Chemistry Chemical Physics, 14(40), 13728. doi:10.1039/c2cp90148j

Cosmochemical consequences of particle trajectories during FU Orionis outbursts by the early Sun

Boss, A. P., Alexander, C. M. O. D., & Podolak, M. (2012). Earth and Planetary Science Letters, 345-348(None), 18–26. doi:10.1016/j.epsl.2012.06.046

THE EVOLUTION OF SOLAR FLUX FROM 0.1 nm TO 160 μm: QUANTITATIVE ESTIMATES FOR PLANETARY STUDIES

Claire, M. W., Sheets, J., Cohen, M., Ribas, I., Meadows, V. S., & Catling, D. C. (2012). The Astrophysical Journal, 757(1), 95. doi:10.1088/0004-637x/757/1/95

Scale Microfossils from the Mid-Neoproterozoic Fifteenmile Group, Yukon Territory

Cohen, P. A., & Knoll, A. H. (2012). Journal of Paleontology, 86(5), 775–800. doi:10.1666/11-138.1

Ion microprobe analyses of δ18O in early quartz cements from 1.9Ga granular iron formations (GIFs): A pilot study

Cunningham, L. C., Page, F. Z., Simonson, B. M., Kozdon, R., & Valley, J. W. (2012). Precambrian Research, 214-215(None), 258–268. doi:10.1016/j.precamres.2012.01.016

Low temperature optical constants of some hydrated sulfates relevant to planetary surfaces

Dalton, J. B., & Pitman, K. M. (2012). Journal of Geophysical Research: Planets, 117(E9), n/a–n/a. doi:10.1029/2011je004036