A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
August 2009Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains

Head, J. W., Murchie, S. L., Prockter, L. M., Solomon, S. C., Chapman, C. R., Strom, R. G., … Watters, T. R. (2009). Earth and Planetary Science Letters, 285(3-4), 227–242. doi:10.1016/j.epsl.2009.03.007

Evidence for intrusive activity on Mercury from the first MESSENGER flyby

Head, J. W., Murchie, S. L., Prockter, L. M., Solomon, S. C., Strom, R. G., Chapman, C. R., … Watters, T. R. (2009). Earth and Planetary Science Letters, 285(3-4), 251–262. doi:10.1016/j.epsl.2009.03.008

Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances

Kerber, L., Head, J. W., Solomon, S. C., Murchie, S. L., Blewett, D. T., & Wilson, L. (2009). Earth and Planetary Science Letters, 285(3-4), 263–271. doi:10.1016/j.epsl.2009.04.037

Evidence for an early prokaryotic endosymbiosis

Lake, J. A. (2009). Nature, 460(7258), 967–971. doi:10.1038/nature08183

Flourishing After the End-Permian Mass Extinction

Marshall, C. R., & Jacobs, D. K. (2009). Science, 325(5944), 1079–1080. doi:10.1126/science.1178325

Shallow basins on Mercury: Evidence of relaxation?

Mohit, P. S., Johnson, C. L., Barnouin-Jha, O., Zuber, M. T., & Solomon, S. C. (2009). Earth and Planetary Science Letters, 285(3-4), 355–363. doi:10.1016/j.epsl.2009.04.023

Insights into the formation of Fe- and Mg-rich aqueous solutions on early Mars provided by the ALH 84001 carbonates

Niles, P. B., Zolotov, M. Y., & Leshin, L. A. (2009). Earth and Planetary Science Letters, 286(1-2), 122–130. doi:10.1016/j.epsl.2009.06.039

THE FREQUENCY OF LOW-MASS EXOPLANETS

O'Toole, S. J., Jones, H. R. A., Tinney, C. G., Butler, R. P., Marcy, G. W., Carter, B., … Bailey, J. (2009). The Astrophysical Journal, 701(2), 1732–1741. doi:10.1088/0004-637x/701/2/1732

Mercury's internal magnetic field: Constraints on large- and small-scale fields of crustal origin

Purucker, M. E., Sabaka, T. J., Solomon, S. C., Anderson, B. J., Korth, H., Zuber, M. T., & Neumann, G. A. (2009). Earth and Planetary Science Letters, 285(3-4), 340–346. doi:10.1016/j.epsl.2008.12.017

VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA,

Simon, J. D., Gal-Yam, A., Gnat, O., Quimby, R. M., Ganeshalingam, M., Silverman, J. M., … Blondin, S. (2009). The Astrophysical Journal, 702(2), 1157–1170. doi:10.1088/0004-637x/702/2/1157