A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
March 2010Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial Community Structure and Function

Inskeep, W. P., Rusch, D. B., Jay, Z. J., Herrgard, M. J., Kozubal, M. A., Richardson, T. H., … Macur, R. E. (2010). PLoS ONE, 5(3), e9773. doi:10.1371/journal.pone.0009773

Characterization of Extracellular Polymeric Substances from Acidophilic Microbial Biofilms

Jiao, Y., Cody, G. D., Harding, A. K., Wilmes, P., Schrenk, M., Wheeler, K. E., … Banfield, J. F. (2010). Applied and Environmental Microbiology, 76(9), 2916–2922. doi:10.1128/aem.02289-09

KEPLER MISSION DESIGN, REALIZED PHOTOMETRIC PERFORMANCE, AND EARLY SCIENCE

Koch, D. G., Borucki, W. J., Basri, G., Batalha, N. M., Brown, T. M., Caldwell, D., … Christensen-Dalsgaard, J. (2010). The Astrophysical Journal, 713(2), L79–L86. doi:10.1088/2041-8205/713/2/l79

The Moon That Would Be a Planet

Lorenz, R., & Sotin, C. (2010). Scientific American, 302(3), 36–43. doi:10.1038/scientificamerican0310-36

Hydrous magmatism on Mars: A source of water for the surface and subsurface during the Amazonian

McCubbin, F. M., Smirnov, A., Nekvasil, H., Wang, J., Hauri, E., & Lindsley, D. H. (2010). Earth and Planetary Science Letters, 292(1-2), 132–138. doi:10.1016/j.epsl.2010.01.028

Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: A quantitative approach using U isotopes

Montoya-Pino, C., Weyer, S., Anbar, A. D., Pross, J., Oschmann, W., Van De Schootbrugge, B., & Arz, H. W. (2010). Geology, 38(4), 315–318. doi:10.1130/g30652.1

Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites

Papineau, D. (2010). Astrobiology, 10(2), 165–181. doi:10.1089/ast.2009.0360

Film Bulk Acoustic-Wave Resonator Based Relative Humidity Sensor Using ZnO Films

Qiu, X., Oiler, J., Zhu, J., Wang, Z., Tang, R., Yu, C., & Yu, H. (2010). Electrochem. Solid-State Lett., 13(5), J65. doi:10.1149/1.3332397

THE COLORS OF EXTREME OUTER SOLAR SYSTEM OBJECTS

Sheppard, S. S. (2010). The Astronomical Journal, 139(4), 1394–1405. doi:10.1088/0004-6256/139/4/1394

Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks

Tangalos, G. E., Beard, B. L., Johnson, C. M., Alpers, C. N., Shelobolina, E. S., Xu, H., … Konishi, H. (2010). Geobiology, 8(3), 197–208. doi:10.1111/j.1472-4669.2010.00237.x