A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
May 2010High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy, surface topography and crystal orientation

Kita, N. T., Huberty, J. M., Kozdon, R., Beard, B. L., & Valley, J. W. (2010). Surf. Interface Anal., 43(1-2), 427–431. doi:10.1002/sia.3424

NEW OBSERVATIONAL CONSTRAINTS ON THE υ ANDROMEDAE SYSTEM WITH DATA FROM THE HUBBLE SPACE TELESCOPE AND HOBBY-EBERLY TELESCOPE

McArthur, B. E., Benedict, G. F., Barnes, R., Martioli, E., Korzennik, S., Nelan, E., & Paul Butler, R. (2010). The Astrophysical Journal, 715(2), 1203–1220. doi:10.1088/0004-637x/715/2/1203

H bonds in astrophysical ices

Palumbo, M. E., Baratta, G. A., Leto, G., & Strazzulla, G. (2010). Journal of Molecular Structure, 972(1-3), 64–67. doi:10.1016/j.molstruc.2009.12.017

Amino acid signatures of salinity on an environmental scale with a focus on the Dead Sea

Rhodes, M. E., Fitz-Gibbon, S. T., Oren, A., & House, C. H. (2010). Environmental Microbiology, 12(9), 2613–2623. doi:10.1111/j.1462-2920.2010.02232.x

Extracellular electron transfer through microbial reduction of solid-phase humic substances

Roden, E. E., Kappler, A., Bauer, I., Jiang, J., Paul, A., Stoesser, R., … Konishi, H. (2010). Nature Geosci, 3(6), 417–421. doi:10.1038/ngeo870

Confocal Laser Scanning Microscopy and Raman Imagery of the Late Neoproterozoic Chichkan Microbiota of South Kazakhstan

Schopf, J. W., Kudryavtsev, A. B., & Sergeev, V. N. (2010). Journal of Paleontology, 84(3), 402–416. doi:10.1666/09-134.1

Precambrian microbe-like pseudofossils: A promising solution to the problem

Schopf, J. W., Kudryavtsev, A. B., Sugitani, K., & Walter, M. R. (2010). Precambrian Research, 179(1-4), 191–205. doi:10.1016/j.precamres.2010.03.003

Ancient origin of the integrin-mediated adhesion and signaling machinery

Sebe-Pedros, A., Roger, A. J., Lang, F. B., King, N., & Ruiz-Trillo, I. (2010). Proceedings of the National Academy of Sciences, 107(22), 10142–10147. doi:10.1073/pnas.1002257107

Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold

Shepard, E. M., McGlynn, S. E., Bueling, A. L., Grady-Smith, C. S., George, S. J., Winslow, M. A., … Cramer, S. P. (2010). Proceedings of the National Academy of Sciences, 107(23), 10448–10453. doi:10.1073/pnas.1001937107