A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
September 2011Crossover from melting to dissociation of CO2 under pressure: Implications for the lower mantle

Litasov, K. D., Goncharov, A. F., & Hemley, R. J. (2011). Earth and Planetary Science Letters, 309(3-4), 318–323. doi:10.1016/j.epsl.2011.07.006

Radiolysis of sulfuric acid, sulfuric acid monohydrate, and sulfuric acid tetrahydrate and its relevance to Europa

Loeffler, M. J., Hudson, R. L., Moore, M. H., & Carlson, R. W. (2011). Icarus, 215(1), 370–380. doi:10.1016/j.icarus.2011.06.008

Fluorine and chlorine abundances in lunar apatite: Implications for heterogeneous distributions of magmatic volatiles in the lunar interior

McCubbin, F. M., Jolliff, B. L., Nekvasil, H., Carpenter, P. K., Zeigler, R. A., Steele, A., … Elardo, S. M. (2011). Geochimica et Cosmochimica Acta, 75(17), 5073–5093. doi:10.1016/j.gca.2011.06.017

Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species

Mielke, S. P., Kiang, N. Y., Blankenship, R. E., Gunner, M. R., & Mauzerall, D. (2011). Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(9), 1231–1236. doi:10.1016/j.bbabio.2011.06.007

The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage

Mumma, M. J., & Charnley, S. B. (2011). Annu. Rev. Astro. Astrophys., 49(1), 471–524. doi:10.1146/annurev-astro-081309-130811

The Major-Element Composition of Mercury's Surface from MESSENGER X-ray Spectrometry

Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., … Ernst, C. M. (2011). Science, 333(6051), 1847–1850. doi:10.1126/science.1211567

XANES analysis of organic residues produced from the UV irradiation of astrophysical ice analogs

Nuevo, M., Milam, S. N., Sandford, S. A., De Gregorio, B. T., Cody, G. D., & Kilcoyne, A. L. D. (2011). Advances in Space Research, 48(6), 1126–1135. doi:10.1016/j.asr.2011.05.020

TURBULENT CLUSTERING OF PROTOPLANETARY DUST AND PLANETESIMAL FORMATION

Pan, L., Padoan, P., Scalo, J., Kritsuk, A. G., & Norman, M. L. (2011). The Astrophysical Journal, 740(1), 6. doi:10.1088/0004-637x/740/1/6

Radioactive Elements on Mercury's Surface from MESSENGER: Implications for the Planet's Formation and Evolution

Peplowski, P. N., Evans, L. G., Hauck, S. A., McCoy, T. J., Boynton, W. V., Gillis-Davis, J. J., … Ebel, D. S. (2011). Science, 333(6051), 1850–1852. doi:10.1126/science.1211576