A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
December 2011Measurement of the radius of Mercury by radio occultation during the MESSENGER flybys

Perry, M. E., Kahan, D. S., Barnouin, O. S., Ernst, C. M., Solomon, S. C., Zuber, M. T., … Smith, D. E. (2011). Planetary and Space Science, 59(15), 1925–1931. doi:10.1016/j.pss.2011.07.022

Stereo topographic models of Mercury after three MESSENGER flybys

Preusker, F., Oberst, J., Head, J. W., Watters, T. R., Robinson, M. S., Zuber, M. T., & Solomon, S. C. (2011). Planetary and Space Science, 59(15), 1910–1917. doi:10.1016/j.pss.2011.07.005

Analysis of MESSENGER Gamma-Ray Spectrometer data from the Mercury flybys

Rhodes, E. A., Evans, L. G., Nittler, L. R., Starr, R. D., Sprague, A. L., Lawrence, D. J., … McCoy, T. J. (2011). Planetary and Space Science, 59(15), 1829–1841. doi:10.1016/j.pss.2011.07.018

Eminescu impact structure: Insight into the transition from complex crater to peak-ring basin on Mercury

Schon, S. C., Head, J. W., Baker, D. M. H., Ernst, C. M., Prockter, L. M., Murchie, S. L., & Solomon, S. C. (2011). Planetary and Space Science, 59(15), 1949–1959. doi:10.1016/j.pss.2011.02.003

Modeling Free Energy Availability from Hadean Hydrothermal Systems to the First Metabolism

Simoncini, E., Russell, M. J., & Kleidon, A. (2011). Orig Life Evol Biosph, 41(6), 529–532. doi:10.1007/s11084-011-9251-4

Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and resurfacing history

Strom, R. G., Banks, M. E., Chapman, C. R., Fassett, C. I., Forde, J. A., Head, J. W., … Merline, W. J. (2011). Planetary and Space Science, 59(15), 1960–1967. doi:10.1016/j.pss.2011.03.018

November 2011Is the Genetic Landscape of the Deep Subsurface Biosphere Affected by Viruses?

Anderson, R. E., Brazelton, W. J., & Baross, J. A. (2011). Frontiers in Microbiology, 2(None), None. doi:10.3389/fmicb.2011.00219

Tidal evolution of planets around brown dwarfs

Bolmont, E., Raymond, S. N., & Leconte, J. (2011). A&A, 535(None), A94. doi:10.1051/0004-6361/201117734

Possible early foraminiferans in post-Sturtian (716-635 Ma) cap carbonates

Bosak, T., Lahr, D. J. G., Pruss, S. B., Macdonald, F. A., Gooday, A. J., Dalton, L., & Matys, E. D. (2011). Geology, 40(1), 67–70. doi:10.1130/g32535.1

Possible early foraminiferans in post-Sturtian (716-635 Ma) cap carbonates

Bosak, T., Lahr, D. J. G., Pruss, S. B., Macdonald, F. A., Gooday, A. J., Dalton, L., & Matys, E. D. (2011). Geology, 40(1), 67–70. doi:10.1130/g32535.1