A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
March 2012A perfect (geochemical) storm yielded exceptional fossils in the early ocean

Lyons, T. W. (2012). Proceedings of the National Academy of Sciences, 109(14), 5138–5139. doi:10.1073/pnas.1202201109

Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (112¯0) sapphire

Oleson, T. A., Sahai, N., Wesolowski, D. J., Dura, J. A., Majkrzak, C. F., & Giuffre, A. J. (2012). Journal of Colloid and Interface Science, 370(1), 192–200. doi:10.1016/j.jcis.2011.12.031

The formation heritage of Jupiter Family Comet 10P/Tempel 2 as revealed by infrared spectroscopy

Paganini, L., Mumma, M. J., Bonev, B. P., Villanueva, G. L., DiSanti, M. A., Keane, J. V., & Meech, K. J. (2012). Icarus, 218(1), 644–653. doi:10.1016/j.icarus.2012.01.004

THE CHEMICAL COMPOSITION OF CO-RICH COMET C/2009 P1 (GARRADD) AT R h = 2.4 and 2.0 AU BEFORE PERIHELION

Paganini, L., Mumma, M. J., Villanueva, G. L., DiSanti, M. A., Bonev, B. P., Lippi, M., & Boehnhardt, H. (2012). The Astrophysical Journal, 748(1), L13. doi:10.1088/2041-8205/748/1/l13

Mesocosms of Aquatic Bacterial Communities from the Cuatro Cienegas Basin (Mexico): A Tool to Test Bacterial Community Response to Environmental Stress

Pajares, S., Bonilla-Rosso, G., Travisano, M., Eguiarte, L. E., & Souza, V. (2012). Microbial Ecology, 64(2), 346–358. doi:10.1007/s00248-012-0045-7

Iron isotope composition of some Archean and Proterozoic iron formations

Planavsky, N., Rouxel, O. J., Bekker, A., Hofmann, A., Little, C. T. S., & Lyons, T. W. (2012). Geochimica et Cosmochimica Acta, 80(None), 158–169. doi:10.1016/j.gca.2011.12.001

THE KECK INTERFEROMETER NULLER

Serabyn, E., Mennesson, B., Colavita, M. M., Koresko, C., & Kuchner, M. J. (2012). The Astrophysical Journal, 748(1), 55. doi:10.1088/0004-637x/748/1/55

Gravity Field and Internal Structure of Mercury from MESSENGER

Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A., Lemoine, F. G., … Mazarico, E. (2012). Science, 336(6078), 214–217. doi:10.1126/science.1218809

Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints

Som, S. M., Catling, D. C., Harnmeijer, J. P., Polivka, P. M., & Buick, R. (2012). Nature, 484(7394), 359–362. doi:10.1038/nature10890

VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. I. A LOW-MASS RATIO STELLAR COMPANION TO TYC 4110-01037-1 IN A 79 DAY ORBIT

Wisniewski, J. P., Ge, J., Crepp, J. R., De Lee, N., Eastman, J., Esposito, M., … Fleming, S. W. (2012). The Astronomical Journal, 143(5), 107. doi:10.1088/0004-6256/143/5/107