A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
June 2012 PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER

Howard, A. W., Marcy, G. W., Bryson, S. T., Jenkins, J. M., Rowe, J. F., Batalha, N. M., … Borucki, W. J. (2012). The Astrophysical Journal Supplement Series, 201(2), 15. doi:10.1088/0067-0049/201/2/15

Mineral–organic interfacial processes: potential roles in the origins of life

James Cleaves II, H., Michalkova Scott, A., Hill, F. C., Leszczynski, J., Sahai, N., & Hazen, R. (2012). Chem. Soc. Rev., 41(16), 5502. doi:10.1039/c2cs35112a

Signatures in magnetites formed by (Ca,Mg,Fe)CO3 thermal decomposition: Terrestrial and extraterrestrial implications

Jimenez-Lopez, C., Rodriguez-Navarro, C., Rodriguez-Navarro, A., Perez-Gonzalez, T., Bazylinski, D. A., Lauer, H. V., & Romanek, C. S. (2012). Geochimica et Cosmochimica Acta, 87(None), 69–80. doi:10.1016/j.gca.2012.03.028

Carbon isotopic fractionation in Fischer-Tropsch-type reactions and relevance to meteorite organics

Johnson, N. M., Elsila, J. E., Kopstein, M., & Nuth, J. A. (2012). Meteoritics & Planetary Science, 47(6), 1029–1034. doi:10.1111/j.1945-5100.2012.01370.x

Late Ediacaran redox stability and metazoan evolution

Johnston, D. T., Poulton, S. W., Goldberg, T., Sergeev, V. N., Podkovyrov, V., Vorob'eva, N. G., … Bekker, A. (2012). Earth and Planetary Science Letters, 335-336(None), 25–35. doi:10.1016/j.epsl.2012.05.010

Forecasting Life: A Study of Activity Cycles in Low-Mass Stars

Kafka, S. (2012). Orig Life Evol Biosph, 42(2-3), 143–152. doi:10.1007/s11084-012-9283-4

3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b

Knutson, H. A., Lewis, N., Fortney, J. J., Burrows, A., Showman, A. P., Cowan, N. B., … Agol, E. (2012). The Astrophysical Journal, 754(1), 22. doi:10.1088/0004-637x/754/1/22

THE ABUNDANCE OF C 3 H 2 AND OTHER SMALL HYDROCARBONS IN THE DIFFUSE INTERSTELLAR MEDIUM

Liszt, H., Sonnentrucker, P., Cordiner, M., & Gerin, M. (2012). The Astrophysical Journal, 753(2), L28. doi:10.1088/2041-8205/753/2/l28

Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions

Li, W., Chakraborty, S., Beard, B. L., Romanek, C. S., & Johnson, C. M. (2012). Earth and Planetary Science Letters, 333-334(None), 304–316. doi:10.1016/j.epsl.2012.04.010

Laser ablation mass spectrometer (LAMS) as a standoff analyzer in space missions for airless bodies

Li, X., Brinckerhoff, W. B., Managadze, G. G., Pugel, D. E., Corrigan, C. M., & Doty, J. H. (2012). International Journal of Mass Spectrometry, 323-324(None), 63–67. doi:10.1016/j.ijms.2012.06.020