A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
January 2013THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS

France, K., Froning, C. S., Linsky, J. L., Roberge, A., Stocke, J. T., Tian, F., … Bushinsky, R. (2013). The Astrophysical Journal, 763(2), 149. doi:10.1088/0004-637x/763/2/149

Bonding, structures, and band gap closure of hydrogen at high pressures

Goncharov, A. F., Tse, J. S., Wang, H., Yang, J., Struzhkin, V. V., Howie, R. T., & Gregoryanz, E. (2013). Physical Review B, 87(2), None. doi:10.1103/physrevb.87.024101

Hierarchical clustering of genetic diversity associated to different levels of mutation and recombination in Escherichia coli: A study based on Mexican isolates

González-González, A., Sánchez-Reyes, L. L., Delgado Sapien, G., Eguiarte, L. E., & Souza, V. (2013). Infection, Genetics and Evolution, 13(None), 187–197. doi:10.1016/j.meegid.2012.09.003

CHEMICAL AND PHYSICAL CONDITIONS IN MOLECULAR CLOUD CORE DC 000.4–19.5 (SL42) IN CORONA AUSTRALIS

Hardegree-Ullman, E., Harju, J., Juvela, M., Sipilä, O., Whittet, D. C. B., & Hotzel, S. (2013). The Astrophysical Journal, 763(1), 45. doi:10.1088/0004-637x/763/1/45

Carbon Mineralogy and Crystal Chemistry

Hazen, R. M., Downs, R. T., Jones, A. P., & Kah, L. (2013). Reviews in Mineralogy and Geochemistry, 75(1), 7–46. doi:10.2138/rmg.2013.75.2

Carbon Mineral Evolution

Hazen, R. M., Downs, R. T., Kah, L., & Sverjensky, D. (2013). Reviews in Mineralogy and Geochemistry, 75(1), 79–107. doi:10.2138/rmg.2013.75.4

Why Deep Carbon?

Hazen, R. M., & Schiffries, C. M. (2013). Reviews in Mineralogy and Geochemistry, 75(1), 1–6. doi:10.2138/rmg.2013.75.1

Exomoon Habitability Constrained by Illumination and Tidal Heating

Heller, R., & Barnes, R. (2013). Astrobiology, 13(1), 18–46. doi:10.1089/ast.2012.0859

Microbial life under extreme energy limitation

Hoehler, T. M., & Jørgensen, B. B. (2013). Nat Rev Micro, 11(2), 83–94. doi:10.1038/nrmicro2939