A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
December 2013EXOPLANET TRANSIT SPECTROSCOPY USING WFC3: WASP-12 b, WASP-17 b, AND WASP-19 b

Mandell, A. M., Haynes, K., Sinukoff, E., Madhusudhan, N., Burrows, A., & Deming, D. (2013). The Astrophysical Journal, 779(2), 128. doi:10.1088/0004-637x/779/2/128

Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars

McLennan, S. M., Anderson, R. B., Bell, J. F., Bridges, J. C., Calef, F., Campbell, J. L., … Clark, B. C. (2013). Science, 343(6169), 1244734–1244734. doi:10.1126/science.1244734

Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars

Ming, D. W., Archer, P. D., Glavin, D. P., Eigenbrode, J. L., Franz, H. B., Sutter, B., … Brunner, A. E. (2013). Science, 343(6169), 1245267–1245267. doi:10.1126/science.1245267

Structure and equilibria among silicate species in aqueous fluids in the upper mantle: Experimental SiO2-H2O and MgO-SiO2-H2O data recorded in situ to 900°C and 5.4 GPa

Mysen, B. O., Mibe, K., Chou, I-M., & Bassett, W. A. (2013). Journal of Geophysical Research: Solid Earth, 118(12), 6076–6085. doi:10.1002/2013jb010537

Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases

Olson, S. L., Kump, L. R., & Kasting, J. F. (2013). Chemical Geology, 362(None), 35–43. doi:10.1016/j.chemgeo.2013.08.012

Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

Onstott, T. C., Magnabosco, C., Aubrey, A. D., Burton, A. S., Dworkin, J. P., Elsila, J. E., … Grunsfeld, S. (2013). Geobiology, 12(1), 1–19. doi:10.1111/gbi.12069

THE UNEXPECTEDLY BRIGHT COMET C/2012 F6 (LEMMON) UNVEILED AT NEAR-INFRARED WAVELENGTHS

Paganini, L., DiSanti, M. A., Mumma, M. J., Villanueva, G. L., Bonev, B. P., Keane, J. V., … Gibb, E. L. (2013). The Astronomical Journal, 147(1), 15. doi:10.1088/0004-6256/147/1/15

Iron isotope geochemistry of biogenic magnetite-bearing sediments from the Bay of Vidy, Lake Geneva

Percak-Dennett, E. M., Loizeau, J-L., Beard, B. L., Johnson, C. M., & Roden, E. E. (2013). Chemical Geology, 360-361(None), 32–40. doi:10.1016/j.chemgeo.2013.10.008

Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency

Robinson, T. D., & Catling, D. C. (2013). Nature Geosci, 7(1), 12–15. doi:10.1038/ngeo2020

Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: Assessing a novel paleoredox proxy

Romaniello, S. J., Herrmann, A. D., & Anbar, A. D. (2013). Chemical Geology, 362(None), 305–316. doi:10.1016/j.chemgeo.2013.10.002