A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
July 2019Crustal fracturing, unconformities, and barite deposition, 3.26–3.23 Ga, Barberton Greenstone Belt, South Africa

Lowe, D. R., Drabon, N., & Byerly, G. R. (2019). Crustal fracturing, unconformities, and barite deposition, 3.26–3.23 Ga, Barberton Greenstone Belt, South Africa. Precambrian Research, 327, 34–46. doi:10.1016/j.precamres.2019.02.024

Quantitative Analysis of Glycine Oligomerization by Ion-Pair Chromatography

Campbell, T. D., Febrian, R., Kleinschmidt, H. E., Smith, K. A., & Bracher, P. J. (2019). Quantitative Analysis of Glycine Oligomerization by Ion-Pair Chromatography. ACS Omega, 4(7), 12745–12752. doi:10.1021/acsomega.9b01492

Carbon isotopic composition of lipid biomarkers from an endoevaporitic gypsum crust microbial mat reveals cycling of mineralized organic carbon

Jahnke, L. L., & Des Marais, D. J. (2019). Carbon isotopic composition of lipid biomarkers from an endoevaporitic gypsum crust microbial mat reveals cycling of mineralized organic carbon. Geobiology. doi:10.1111/gbi.12355

Extracellular superoxide production by key microbes in the global ocean

Sutherland, K. M., Coe, A., Gast, R. J., Plummer, S., Suffridge, C. P., Diaz, J. M., … Hansel, C. M. (2019). Extracellular superoxide production by key microbes in the global ocean. Limnology and Oceanography. doi:10.1002/lno.11247

Global marine redox changes drove the rise and fall of the Ediacara biota

Zhang, F., Xiao, S., Romaniello, S. J., Hardisty, D., Li, C., Melezhik, V., … Anbar, A. D. (2019). Global marine redox changes drove the rise and fall of the Ediacara biota. Geobiology. doi:10.1111/gbi.12359

A Warm Jupiter-sized Planet Transiting the Pre-main-sequence Star V1298 Tau

David, T. J., Cody, A. M., Hedges, C. L., Mamajek, E. E., Hillenbrand, L. A., Ciardi, D. R., … Hinkley, S. (2019). A Warm Jupiter-sized Planet Transiting the Pre-main-sequence Star V1298 Tau. The Astronomical Journal, 158(2), 79. doi:10.3847/1538-3881/ab290f

Modeling a Carrington-scale Stellar Superflare and Coronal Mass Ejection from ${\kappa }^{1}{Cet}$

Lynch, B. J., Airapetian, V. S., DeVore, C. R., Kazachenko, M. D., Lüftinger, T., Kochukhov, O., … Abbett, W. P. (2019). Modeling a Carrington-scale Stellar Superflare and Coronal Mass Ejection from ${\kappa }^{1}{Cet}$. The Astrophysical Journal, 880(2), 97. doi:10.3847/1538-4357/ab287e

A Recommendation Algorithm to Predict Giant Exoplanet Host Stars Using Stellar Elemental Abundances

Hinkel, N. R., Unterborn, C., Kane, S. R., Somers, G., & Galvez, R. (2019). A Recommendation Algorithm to Predict Giant Exoplanet Host Stars Using Stellar Elemental Abundances. The Astrophysical Journal, 880(1), 49. doi:10.3847/1538-4357/ab27c0

Stable Isotope Constraints on Marine Productivity Across the Cretaceous‐Paleogene Mass Extinction

Sepúlveda, J., Alegret, L., Thomas, E., Haddad, E., Cao, C., & Summons, R. E. (2019). Stable Isotope Constraints on Marine Productivity Across the Cretaceous‐Paleogene Mass Extinction. Paleoceanography and Paleoclimatology, 34(7), 1195–1217. doi:10.1029/2018pa003442

Reconstructing the late-accretion history of the Moon

Zhu, M-H., Artemieva, N., Morbidelli, A., Yin, Q-Z., Becker, H., & Wünnemann, K. (2019). Reconstructing the late-accretion history of the Moon. Nature, 571(7764), 226–229. doi:10.1038/s41586-019-1359-0