A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
June 2020Mutually stabilizing interactions between proto-peptides and RNA

Frenkel-Pinter, M., Haynes, J. W., Mohyeldin, A. M., C, M., Sargon, A. B., Petrov, A. S., … Leman, L. J. (2020). Mutually stabilizing interactions between proto-peptides and RNA. Nature Communications, 11(1), None. doi:10.1038/s41467-020-16891-5

The root of anomalously specular reflections from solid surfaces on Saturn’s moon Titan

Hofgartner, J. D., Hayes, A. G., Campbell, D. B., Lunine, J. I., Black, G. J., MacKenzie, S. M., … Wall, S. D. (2020). The root of anomalously specular reflections from solid surfaces on Saturn’s moon Titan. Nature Communications, 11(1), None. doi:10.1038/s41467-020-16663-1

Aluminosilicate haloes preserve complex life approximately 800 million years ago

Anderson, R. P., Tosca, N. J., Cinque, G., Frogley, M. D., Lekkas, I., Akey, A., … Briggs, D. E. G. (2020). Aluminosilicate haloes preserve complex life approximately 800 million years ago. Interface Focus, 10(4), 20200011. doi:10.1098/rsfs.2020.0011

Geochemical and Stable Fe Isotopic Analysis of Dissimilatory Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park

Fortney, N. W., Beard, B. L., Hutchings, J. A., Shields, M. R., Bianchi, T. S., Boyd, E. S., … Roden, E. E. (2020). Geochemical and Stable Fe Isotopic Analysis of Dissimilatory Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park. Astrobiology. doi:10.1089/ast.2019.2058

Mainly on the Plane: Deep Subsurface Bacterial Proteins Bind and Alter Clathrate Structure

Johnson, A. M., Huard, D. J. E., Kim, J., Raut, P., Dai, S., Lieberman, R. L., & Glass, J. B. (2020). Mainly on the Plane: Deep Subsurface Bacterial Proteins Bind and Alter Clathrate Structure. None. doi:10.1101/2020.06.15.152181

The non-glacial and non-cratonic origin of an early Archean felsic volcaniclastic unit, Barberton Greenstone Belt, South Africa

Lowe, D. R., & Byerly, G. R. (2020). The non-glacial and non-cratonic origin of an early Archean felsic volcaniclastic unit, Barberton Greenstone Belt, South Africa. Precambrian Research, 341, 105647. doi:10.1016/j.precamres.2020.105647

Biostratinomy of the Ediacara Member (Rawnsley Quartzite, South Australia): implications for depositional environments, ecology and biology of Ediacara organisms

Droser, M. L., Tarhan, L. G., Evans, S. D., Surprenant, R. L., & Gehling, J. G. (2020). Biostratinomy of the Ediacara Member (Rawnsley Quartzite, South Australia): implications for depositional environments, ecology and biology of Ediacara organisms. Interface Focus, 10(4), 20190100. doi:10.1098/rsfs.2019.0100

Introduction: Chemical Evolution and the Origins of Life

Krishnamurthy, R., & Hud, N. V. (2020). Introduction: Chemical Evolution and the Origins of Life. Chemical Reviews, 120(11), 4613–4615. doi:10.1021/acs.chemrev.0c00409

Sensitivity Analyses of Exoplanet Occurrence Rates from Kepler and Gaia

Shabram, M. I., Batalha, N., Thompson, S. E., Hsu, D. C., Ford, E. B., Christiansen, J. L., … Caldwell, D. (2020). Sensitivity Analyses of Exoplanet Occurrence Rates from Kepler and Gaia. The Astronomical Journal, 160(1), 16. doi:10.3847/1538-3881/ab90fe

Deep Ocean Passive Acoustic Technologies for Exploration of Ocean and Surface Sea Worlds in the Outer Solar System

Dziak, R., , ., Banfield, D., Lorenz, R., Matsumoto, H., Klinck, H., … Kahn, B. (2020). Deep Ocean Passive Acoustic Technologies for Exploration of Ocean and Surface Sea Worlds in the Outer Solar System. Oceanography, 33(2), None. doi:10.5670/oceanog.2020.221