A volcanically active planet is shown in closeup at the left side of the image with glowing eruptions and lines of lava on the surface. To the right and in the distance is a faint blue glowing ball representing the more massive planet in the system.Sixteen frames from Voyager 1's flyby of Jupiter in 1979 were merged to create this image. Jupiter's Great Red Spot is visible in the center. Jupiter's moon Europa can be seen in the foreground at the bottom left of the image.The frame is a horizontal rainbow of color on a grid. Shadows of molecules can be seen through the light as well as the jagged peaks and troughs of spectral lines.
Fizzy Super Earths and Lava Worlds“Fizzy Super-Earths: Impacts of Magma Composition on the Bulk Density and Structure of Lava Worlds.” in The Astrophysical Journal.01/03
Identifying Hydrothermal Activity on Icy Ocean Worlds“Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds.” In Icarus.02/03
NASA Raman Spectroscopic Database"The NASA Raman spectroscopic database: Ramdb version 1.00.” In Icarus.03/03
NextPrevious
Go Explore
July 2020Correction to: The Effect of Bacterial Sulfate Reduction Inhibition on the Production and Stable Isotopic Composition of Methane in Hypersaline Environments

Kelley, C. A., Bebout, B. M., Chanton, J. P., Detweiler, A. M., Frisbee, A., Nicholson, B. E., … Winkler, C. (2020). Correction to: The Effect of Bacterial Sulfate Reduction Inhibition on the Production and Stable Isotopic Composition of Methane in Hypersaline Environments. Aquatic Geochemistry. doi:10.1007/s10498-020-09381-z

Lipid Biomarker Record of the Serpentinite-Hosted Ecosystem of the Samail Ophiolite, Oman and Implications for the Search for Biosignatures on Mars

Newman, S. A., Lincoln, S. A., O'Reilly, S., Liu, X., Shock, E. L., Kelemen, P. B., & Summons, R. E. (2020). Lipid Biomarker Record of the Serpentinite-Hosted Ecosystem of the Samail Ophiolite, Oman and Implications for the Search for Biosignatures on Mars. Astrobiology, 20(7), 830–845. doi:10.1089/ast.2019.2066

Bacterial chemolithoautotrophy via manganese oxidation

Yu, H., & Leadbetter, J. R. (2020). Bacterial chemolithoautotrophy via manganese oxidation. Nature, 583(7816), 453–458. doi:10.1038/s41586-020-2468-5

Widespread poly-metamorphosed Archean granitoid gneisses and supracrustal enclaves of the southern Inukjuak Domain, Québec (Canada)

Greer, J., Caro, G., Cates, N. L., Tropper, P., Bleeker, W., Kelly, N. M., & Mojzsis, S. J. (2020). Widespread poly-metamorphosed Archean granitoid gneisses and supracrustal enclaves of the southern Inukjuak Domain, Québec (Canada). Lithos, 364-365, 105520. doi:10.1016/j.lithos.2020.105520

Stratification Dynamics of Titan’s Lakes via Methane Evaporation

Steckloff, J. K., Soderblom, J. M., Farnsworth, K. K., Chevrier, V. F., Hanley, J., Soto, A., … Engle, A. (2020). Stratification Dynamics of Titan’s Lakes via Methane Evaporation. The Planetary Science Journal, 1(2), 26. doi:10.3847/psj/ab974e

Availability of previously lost data and metadata from the Apollo Lunar Surface Experiments Package (ALSEP)

Nagihara, S., Williams, D. R., Nakamura, Y., Kiefer, W. S., McLaughlin, S. A., & Taylor, P. T. (2020). Availability of previously lost data and metadata from the Apollo Lunar Surface Experiments Package (ALSEP). Planetary and Space Science, None, 105039. doi:10.1016/j.pss.2020.105039

Report Series: Committee on Astrobiology and Planetary Science

, ., , ., , ., & , . (2020). Report Series: Committee on Astrobiology and Planetary Science. None. doi:10.17226/25868

June 2020An evolutionary system of mineralogy, part II: Interstellar and solar nebula primary condensation mineralogy (> 4.565 Ga)

An evolutionary system of mineralogy, part II: Interstellar and solar nebula primary condensation mineralogy (> 4.565 Ga) (2020). American Mineralogist, None(None), None. doi:10.2138/am-2020-7447

Amino acid encoding for deep learning applications

ElAbd, H., Bromberg, Y., Hoarfrost, A., Lenz, T., Franke, A., & Wendorff, M. (2020). Amino acid encoding for deep learning applications. BMC Bioinformatics, 21(1), None. doi:10.1186/s12859-020-03546-x

New implications for the origin of the IAB main group iron meteorites and the isotopic evolution of the noncarbonaceous (NC) reservoir

Hilton, C. D., & Walker, R. J. (2020). New implications for the origin of the IAB main group iron meteorites and the isotopic evolution of the noncarbonaceous (NC) reservoir. Earth and Planetary Science Letters, 540, 116248. doi:10.1016/j.epsl.2020.116248