Notice: This is an archived and unmaintained page. For current information, please browse astrobiology.nasa.gov.

2009 Annual Science Report

Astrobiology Roadmap Objective 3.3 Reports Reporting  |  JUL 2008 – AUG 2009

Project Reports

  • Astrobiology of Icy Worlds

    Icy worlds such as Titan, Europa, Enceladus, and others may harbor the greatest volume of habitable space in the Solar System. For at least five of these worlds, considerable evidence exists to support the conclusion that oceans or seas may lie beneath the icy surfaces. The total liquid water reservoir within these worlds may be some 30 to 40 times the volume of liquid water on Earth. This vast quantity of liquid water raises two questions: Can life emerge and thrive in such cold, lightless oceans beneath many kilometers of ice? And if so, do the icy shells hold clues to life in the subsurface? We will address these questions through four major investigations namely, the habitability, survivability, and detectability of life of icy worlds coupled with “Path to Flight” Technology demonstration. We will also use a wealth of existing age-appropriate educational resources to convey concepts of astrobiology, spectroscopy, and remote sensing; develop standards-based, hands-on activities to extend the application of these resources to the search for life on icy worlds.

    ROADMAP OBJECTIVES: 1.1 2.1 2.2 3.1 3.2 3.3 3.4 4.1 5.1 5.3 6.1 6.2 7.1 7.2
  • AbGradCon 2009

    The Astrobiology Graduate Student Conference (AbGradCon) was held on the UW campus July 17 – 20 2009. AbGradCon supports NAI’s mission to carry out, support and catalyze collaborative, interdisciplinary research, train the next generation of astrobiology researchers, provide scientific and technical leadership on astrobiology investigations for current and future space missions, and explore new approaches using modern information technology to conduct interdisciplinary and collaborative research amongst widely-distributed investigators. This was done through a diverse range of activities, ranging from formal talks and poster sessions to free time for collaboration-enabling discussions, social activities, web 2.0 conference extensions, public outreach and grant writing simulations.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Task 1.1.1 Numerical Simulation of the Mixing of Organics and Ice During an Impact

    On the Titan surface, organics can mix and react with liquid water created during an impact. A model simulation of an impact on the Titan surface will be used to estimate how long liquid water might exist after an impact, which will suggest how much reaction-forming prebiotic compounds may have occurred.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Biomimetic Cluster Synthesis: Bridging the Structure and Reactivity of Biotic and Abiotic Iron-Sulfur Motifs

    Synthetic approaches are being utilized to bridge the gap between Fe-S minerals and highly evolved biological Fe-S metalloenzymes. These studies are focusing on organic template (protein) mediated cluster assembly (biomineralization), probing properties of synthetic clusters, both as homogeneous and heterogeneous catalysts, investigating the impact of size scale on the properties of synthetic Fe-S clusters, and computational modeling of the structure and catalytic properties of synthetic Fe-S nanoparticles in the 5-50 nm range.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 3.4 7.1 7.2
  • AIRFrame Technical Infrastructure and Visualization Software Evaluation

    To create visualizations of interdisciplinary relationships in the field of astrobiology, this component of the AIRFrame project involves creating a data model for source documents, a database structure, and evaluating off-the-shelf visualization software for possible application to the final project.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Computational Chemical Modeling the Link Between Structure and Reactivity of Iron-Sulfur Motifs

    Traditionally, the iron-sulfur mineral catalysis, iron-sulfur enzyme catalysis, and biomimetic thrust areas of ABRC have their own unique ways to probe the structure/function relationships at the surface defect sites, at the enzymatic active sites, or at the interface of biomacromolecular and iron-sulfur particle layers, respectively. Computation chemistry can provide a cohesive link among these thrust areas through bridging the enzymatic/mineral catalysis and molecular structure/chemical reactivity via fundamental physico-chemical properties at the molecule level.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 3.4 7.1 7.2
  • Task 1.1.2 Models of the Internal Dynamics: Formation of Liquids in the Subsurface and Relationships With Cryovolcanism

    Prebiotic compounds can be formed on the Titan surface when organics mix and react with liquid water in a cryovolcanic context, where subsurface water “erupts” onto the cold surface.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Task 1.2 Interaction of Methane/ethane With Water Ice

    The degree of mixing on the Titan surface between liquid hydrocarbons and the icy water surface establishes a potential for reactions that could form prebiotic compounds.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Bioastronomy 2007 Meeting Proceedings

    The 9th International Bioastronomy coneference: Molecules, Microbes and Extraterrestrial Life was organized by Commission 51 (Bioastronomy) of the International Astronomical Union, and by the UH NASA Astrobiology team. The meeting was held in San Juan, Puerto Rico from 16-20 July 2007. During the reporting period the Proceedings were finalized and will have a publication date of 2009.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Task 2.1.2 Atmospheric State and Dynamics

    An understanding of the structure of the Titan atmosphere provides the context for the formation of complex organic compounds in the atmosphere.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Molecular Beam Studies of Nitrogen Reactions on Iron-Sulfur Surfaces

    It is generally accepted that surface-mediated reactions occur on defect sites. The role of defects in the formation of ammonia is being systematically evaluated using molecular beam-surface scattering experiments in which a hydrogen atom plasma source (deuterium due to easier detection) is used to hydrogenate a pyrite surface. The hydrogenated surface is subsequently bombarded with a molecular beam of energetic nitrogen molecules and the conversion of nitrogen to products, such as ammonia is probed through mass spectrometry.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 7.1 7.2
  • CASS Planning

    The computational astrobiology summer school (CASS) is a two week program, followed by a semester of mentored independent work, which has the following goals:

    - To introduce computer science and engineering (CS&E) graduate students to the field of astrobiology, – To introduce astrobiologists to the tools and techniques that current methods in CS&E can provide, and – To encourage interdisciplinary projects that will result in advances in astrobiology.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2
  • Origin of Life and Catalysis – Philosophical Considerations

    The philosophy origins of life focus group at the ABRC is interested in exploring the known physical constraints of the origins of life as well as examining the epistemic foundations on which origins of life thought are founded upon. To address these goals, the group consists of persons from divergent studies areas including chemistry and biochemistry, physics, philosophy, and history of science. Synergy resulting from a sustained group interaction of this multi-disciplinary team has resulted in the creation of a number of lines of inquiry that the group is pursuing.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 3.4 4.2
  • Task 2.1.3 Aerosol Nucleation and Growth

    Organic macromolecular aerosols in the Titan atmosphere may contribute to the orange haze seen in the visible spectrum and can serve as the initial stage of prebiotic chemistry on Titan.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Task 2.2.1 Characterization of Aerosol Nucleation and Growth

    Aerosol nucleation in the Titan atmosphere may form the orange material seen in visible images.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Probing the Structure and Nitrogen Reduction Activity of Iron-Sulfur Minerals

    Iron-sulfur compounds are common in both biological and geological systems. The adaptation of Fe-S clusters from the abiotic world to the biological world may have been an early event in the development of life on Earth and possibly a common feature of life elsewhere in the universe. The iron-sulfur mineral thrust of the ABRC is focused on examining the structure and reactivity of FeS minerals using nitrogen fixation as a model reaction.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 7.1 7.2
  • Task 2.2.2.1 Ultraviolet/infrared Spectroscopy of Ice Films

    Condensed phase chemistry in organic aerosols can produce large organic macromolecules.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Structure, Function, and Biosynthesis of the Complex Iron-Sulfur Clusters at the Active Sites of Nitrogenases and Hydrogenases

    Iron-sulfur clusters are thought to be among the most ancient cofactors in living systems. The iron-sulfur enzyme thrust is focused on examining the structure, mechanism, and biosynthesis of the complex Fe-S enzymes nitrogenase and hydrogenase. Biochemical, biophysical, and structure biology approaches are being employed to provide insights into complex iron-sulfur biosynthesis to establish paradigms for complex iron-sulfur cluster biosynthesis that can be placed in the context of the evolution of iron-sulfur motifs from the abiotic to biotic systems.

    ROADMAP OBJECTIVES: 3.1 3.2 3.3 6.1 6.2 7.1 7.2
  • Task 2.2.2.3 Aerosol Photoprocessing and Analysis

    Organic aerosols produced in the laboratory can be photoprocessed to simulate actual Titan tholin-producing chemistry.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Task 3.1 Reactions of Organics With Ices and Mineral Grains

    The formation of prebiotic chemical compounds on the Titan surface may be catalyzed by the presence of mineral grains.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Task 3.3 Solubility of Organics in Methane

    Liquid methane can serve as a solvent medium in which organic chemistry may occur in sites on the Titan surface.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • The Commonality of Life in the Universe

    Is life a common outcome of physical and chemical processes in the universe? Around other stars, Titan-like environments are key astrobiology targets.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1 3.2 3.3
  • Developing New Sampling System, Collection of Juan De Fuca Ridge Basement Fluids

    Our Deep Biosphere project is designed to exploit the unprecedented opportunities provided by the new generation of long-term borehole- observatories installed on the flanks of the Juan de Fuca Ridge (JdFR) by the Integrated Ocean Drilling Program, to study the microbial geochemistry and ecology of the sediment-buried ocean basement. The Drill ship drills deep holes through the sediments into the underlying basaltic rocks and then installs a 'CORK’ observatory consisting of casings, fluid delivery lines with seafloor access-spigots, downhole instruments, and a top plug.

    ROADMAP OBJECTIVES: 3.2 3.3 4.1 5.2 5.3
  • Quantification of the Disciplinary Roots of Astrobiology

    The questions of astrobiology span many scientific fields. This project analyzes databases of scientific literature to determine and quantify the diverse disciplinary roots of astrobiology. This is one component of a wider study to build a map of relationships between the constituent fields of astrobiology, so relevant knowledge in diverse fields can be most efficiently inform the study of life in the universe.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 7.1 7.2