On the early Earth, light came not only from the sun but also from the incessant bombardment of fireball meteorites continually striking the planet. Now, the recent work of University of South Florida (USF) associate professor of geology Matthew Pasek, USF researcher Maheen Gull, and colleagues at Georgia Institute of Technology, has demonstrated that these meteorites may have carried within them an extraterrestrial mineral that, as it corroded in water on Earth, could have provided the essential chemical spark leading to the birth of biological life on the planet.

In previous work, Pasek and colleagues suggested that the ancient meteorites contained the iron-nickel phosphide mineral “schreibersite,” and that when schreibersite came into contact with Earth’s watery environment a phosphate, a salt, was released that scientists believe could have played a role in the development of “prebiotic” molecules.

In a recent study appearing in Nature Publishing Group’s Scientific Reports, the researchers focused on the properties of schreibersite and conducted experiments with the mineral to better understand how – in a chemical reaction with the corrosive effects of water called “phosphorylation” – schreibersite could have provided the phosphate important to the emergence of early biological life.

The full story is available at: http://www.astrobio.net/topic/origins/origin-and-evolution-of-life/geologists-focus-on-mineral-for-clues-to-beginning-of-biological-life-on-earth/#sthash.SZ9qRQG0.dpuf