2011 Annual Science Report
NASA Ames Research Center Reporting | SEP 2010 – AUG 2011
Executive Summary
The Ames Team investigates the physical, chemical and biological processes that combined to create and shape early habitable environments. We trace the cosmic evolution of organic molecules from the interstellar medium, through protoplanetary disks and planetesimals, and ultimately to potentially habitable planets. We characterize the diversity of planetary systems that might emerge from protoplanetary disks. We identify diverse scenarios for the origins and early evolution of catalytic functionality and metabolic reaction networks. We develop and test a methodology for assessing quantitatively the habitability of early planetary environments – particularly Mars – via capabilities that could be deployed in situ. Our ongoing active involvement in multiple NASA missions provides context, incentives and collaborative opportunities for our research and education and public outreach programs. Please visit http://www.amesteam.arc.nasa.gov/.
Astrochemistry. We document molecular species in space that are interesting from a biogenic perspective and we seek ... Continue reading.
-
David Des Marais
NAI, ASTEP, ASTID, Exobiology -
TEAM Active Dates:
2/2009 - 1/2015 CAN 5 -
Team Website:
http://amesteam.arc.nasa.gov/ -
Members:
46 (See All) - Visit Team Page
Project Reports
-
Origins of Functional Proteins and the Early Evolution of Metabolism
The main goal of this project is to identify critical requirements for the emergence of biological complexity in early habitable environments by examining key steps in the origins and early evolution of functional proteins and metabolic reaction networks. In particular, we investigate whether protein functionality can arise from an inventory of polymers with amino acid sequences that might have naturally existed in habitable environments. We attempt the first demonstration of multiple origins of a single enzymatic function, and investigate experimentally how primordial proteins could evolve through the diversification of their structure and function. Building on this work and on our knowledge of ubiquitous proto-cellular functions and constraints of prebiotic chemistry, we conduct computer simulations aimed at elucidating fundamental principles that govern coupled evolution of early metabolic reactions and their catalysts, and transport across cell walls.
ROADMAP OBJECTIVES: 3.2 3.4 -
Disks and the Origins of Planetary Systems
This task is concerned with understanding the evolution of complex habitable environments as primitive planetary bodies are forming in a developing protoplanetary disk. The planet formation process begins with the collapse of large molecular clouds into flattened disks. This disk is in many ways an astrochemical “primeval soup” in which cosmically abundant elements are assembled into increasingly complex hydrocarbons and mixed in the dust and gas envelope within the disk. Gravitational attraction among the myriad small bodies leads to planet formation. If the newly formed planet is a suitable distance from its star to support liquid water at the surface, it is in the so called “habitable zone.” The formation process and identification of such life-supporting bodies is the goal of this project.
ROADMAP OBJECTIVES: 1.1 1.2 2.1 4.3 -
Cosmic Distribution of Chemical Complexity
The central theme of this project is to explore the possible connections between chemistry in space and the origins of life. We start by tracking the formation and development of chemical complexity in space from simple molecules such as formaldehyde to complex species including amino and nucleic acids. The work focuses on molecular species that are interesting from a biogenic perspective and on understanding their possible roles in the origin of life on habitable worlds. We do this by measuring the spectra and chemistry of analog materials in the laboratory, by remote sensing in small spacecraft and by analysis of extraterrestrial samples returned by spacecraft or that fall to Earth as meteorites. We then use these results to interpret astronomical observations made with ground-based and orbiting telescopes.
ROADMAP OBJECTIVES: 1.1 2.1 2.2 3.1 3.2 3.4 4.3 7.1 7.2 -
Mineralogical Traces of Early Habitable Environments
The goal of our work is to discern the habitability (potential to support life) of ancient Martian environments, with an emphasis on understanding which environments could have supported more life than others. This information will help to guide the selection of sites on the Martian surface, for future missions designed to seek direct evidence of life. Our approach has two main parts: 1. We will use the presence of specific minerals or groups of minerals – an analysis that can be performed robotically on Mars — to constrain the chemical and physical conditions of the ancient environments in which they formed. 2. We will characterize the distribution of life on Earth in a series of environments spanning those same parameters, in order to inform the first portion of the investigation.
ROADMAP OBJECTIVES: 2.1 5.3
Education & Public Outreach
Publications
-
Abe, Y., Abe-Ouchi, A., Sleep, N. H., & Zahnle, K. J. (2011). Habitable Zone Limits for Dry Planets. Astrobiology, 11(5), 443–460. doi:10.1089/ast.2010.0545
-
Allen, M. A., Neilan, B. A., Burns, B. P., Jahnke, L. L., & Summons, R. E. (2010). Lipid biomarkers in Hamelin Pool microbial mats and stromatolites. Organic Geochemistry, 41(11), 1207–1218. doi:10.1016/j.orggeochem.2010.07.007
-
Alperin, M., & Hoehler, T. (2010). The Ongoing Mystery of Sea-Floor Methane. Science, 329(5989), 288–289. doi:10.1126/science.1189966
-
Anderson, R. B., Morris, R. V., Clegg, S. M., Bell, J. F., Wiens, R. C., Humphries, S. D., … McInroy, R. (2011). The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy. Icarus, 215(2), 608–627. doi:10.1016/j.icarus.2011.07.034
-
Bera, P. P., Nuevo, M., Milam, S. N., Sandford, S. A., & Lee, T. J. (2010). Mechanism for the abiotic synthesis of uracil via UV-induced oxidation of pyrimidine in pure H[sub 2]O ices under astrophysical conditions. J. Chem. Phys., 133(10), 104303. doi:10.1063/1.3478524
-
Boersma, C., Bauschlicher, C. W., Ricca, A., Mattioda, A. L., Peeters, E., Tielens, A. G. G. M., & Allamandola, L. J. (2011). POLYCYCLIC AROMATIC HYDROCARBON FAR-INFRARED SPECTROSCOPY. The Astrophysical Journal, 729(1), 64. doi:10.1088/0004-637x/729/1/64
-
Bouwman, J., Cuppen, H. M., Steglich, M., Allamandola, L. J., & Linnartz, H. (2011). Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. A&A, 529, A46. doi:10.1051/0004-6361/201015762
-
Bouwman, J., Mattioda, A. L., Linnartz, H., & Allamandola, L. J. (2010). Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. A&A, 525, A93. doi:10.1051/0004-6361/201015059
-
Chiar, J. E., Pendleton, Y. J., Allamandola, L. J., Boogert, A. C. A., Ennico, K., Greene, T. P., … Eriksson, K. (2011). ICES IN THE QUIESCENT IC 5146 DENSE CLOUD. The Astrophysical Journal, 731(1), 9. doi:10.1088/0004-637x/731/1/9
-
Clemett, S. J., Sandford, S. A., Nakamura-Messenger, K., HÖRZ, F., & McKAY, D. S. (2010). Complex aromatic hydrocarbons in Stardust samples collected from comet 81P/Wild 2. Meteoritics & Planetary Science, 45(5), 701–722. doi:10.1111/j.1945-5100.2010.01062.x
-
Crumpler, L. S., Arvidson, R. E., Squyres, S. W., McCoy, T., Yingst, A., Ruff, S., … Hurowitz, J. (2011). Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations. Journal of Geophysical Research, 116. doi:10.1029/2010je003749
-
Geers, V. C., Gorti, U., Meyer, M. R., Mamajek, E., Benz, A. O., & Hollenbach, D. (2012). REMNANT GAS IN EVOLVED CIRCUMSTELLAR DISKS: HERSCHEL PACS OBSERVATIONS of 10-100 Myr OLD DISK SYSTEMS. The Astrophysical Journal, 755(1), 8. doi:10.1088/0004-637x/755/1/8
-
Gorti, U., Hollenbach, D., Najita, J., & Pascucci, I. (2011). EMISSION LINES FROM THE GAS DISK AROUND TW HYDRA AND THE ORIGIN OF THE INNER HOLE. The Astrophysical Journal, 735(2), 90. doi:10.1088/0004-637x/735/2/90
-
Hoehler, T. M., & Westall, F. (2010). Mars Exploration Program Analysis Group Goal One: Determine If Life Ever Arose on Mars. Astrobiology, 10(9), 859–867. doi:10.1089/ast.2010.0527
-
Lissauer, J. J., Fabrycky, D. C., Ford, E. B., Borucki, W. J., Fressin, F., Marcy, G. W., … Steffen, J. H. (2011). A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature, 470(7332), 53–58. doi:10.1038/nature09760
-
Nakamura, T., Noguchi, T., Tanaka, M., Zolensky, M. E., Kimura, M., Tsuchiyama, A., … Kawaguchi, J. (2011). Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites. Science, 333(6046), 1113–1116. doi:10.1126/science.1207758
-
Nuevo, M., Milam, S. N., Sandford, S. A., De Gregorio, B. T., Cody, G. D., & Kilcoyne, A. L. D. (2011). XANES analysis of organic residues produced from the UV irradiation of astrophysical ice analogs. Advances in Space Research, 48(6), 1126–1135. doi:10.1016/j.asr.2011.05.020
-
Orphan, V. J., & Hoehler, T. M. (2011). Microbiology: Hydrogen for dinner. Nature, 476(7359), 154–155. doi:10.1038/476154a
-
Pascucci, I., Sterzik, M., Alexander, R. D., Alencar, S. H. P., Gorti, U., Hollenbach, D., … Edwards, S. (2011). THE PHOTOEVAPORATIVE WIND FROM THE DISK OF TW Hya. The Astrophysical Journal, 736(1), 13. doi:10.1088/0004-637x/736/1/13
-
Ricca, A., Bauschlicher, C. W., & Allamandola, L. J. (2011). PROTONATED POLYCYCLIC AROMATIC HYDROCARBONS REVISITED. The Astrophysical Journal, 727(2), 128. doi:10.1088/0004-637x/727/2/128
-
Ricca, A., Bauschlicher, J. ,. C. W., & Allamandola, L. J. (2011). THE INFRARED SPECTROSCOPY OF POLYCYCLIC AROMATIC HYDROCARBONS WITH FIVE- AND SEVEN-MEMBERED FUSED RING DEFECTS. The Astrophysical Journal, 729(2), 94. doi:10.1088/0004-637x/729/2/94
-
Richard, D. T., Glenar, D. A., Stubbs, T. J., Davis, S. S., & Colaprete, A. (2011). Light scattering by complex particles in the Moon’s exosphere: Toward a taxonomy of models for the realistic simulation of the scattering behavior of lunar dust. Planetary and Space Science, 59(14), 1804–1814. doi:10.1016/j.pss.2011.01.003
-
Rosenberg, M. J. F., Berné, O., Boersma, C., Allamandola, L. J., & Tielens, A. G. G. M. (2012). Coupled blind signal separation and spectroscopic database fitting of the mid-infrared PAH features (Corrigendum). A&A, 537, C5. doi:10.1051/0004-6361/201016340e
-
Sandford, S. A., Milam, S. N., Nuevo, M., Jenniskens, P., & Shaddad, M. H. (2010). The mid-infrared transmission spectra of multiple stones from the Almahata Sitta meteorite. Meteoritics & Planetary Science, 45(10-11), 1821–1835. doi:10.1111/j.1945-5100.2010.001096.x
-
Schlaufman, K. C., & Laughlin, G. (2011). KEPLER EXOPLANET CANDIDATE HOST STARS ARE PREFERENTIALLY METAL RICH. The Astrophysical Journal, 738(2), 177. doi:10.1088/0004-637x/738/2/177
-
Schroder, C., Klingelhofer, G., Morris, R. V., Bernhardt, B., Blumers, M., Fleischer, I., … De Souza, P. A. (2011). Field-portable Mossbauer spectroscopy on Earth, the Moon, Mars, and beyond. Geochemistry: Exploration, Environment, Analysis, 11(2), 129–143. doi:10.1144/1467-7873/09-iags-018
-
Seelig, B. (2011). mRNA display for the selection and evolution of enzymes from in vitro-translated protein libraries. Nature Protocols, 6(4), 540–552. doi:10.1038/nprot.2011.312
-
Treiman, A. H., & Essene, E. J. (2011). Chemical composition of magnetite in Martian meteorite ALH 84001: Revised appraisal from thermochemistry of phases in Fe–Mg–C–O. Geochimica et Cosmochimica Acta, 75(18), 5324–5335. doi:10.1016/j.gca.2011.06.038
-
Tsuchiyama, A., Uesugi, M., Matsushima, T., Michikami, T., Kadono, T., Nakamura, T., … Kawaguchi, J. (2011). Three-Dimensional Structure of Hayabusa Samples: Origin and Evolution of Itokawa Regolith. Science, 333(6046), 1125–1128. doi:10.1126/science.1207807
-
Vogel, M. B., Des Marais, D. J., Parenteau, M. N., Jahnke, L. L., Turk, K. A., & Kubo, M. D. Y. (2010). Biological influences on modern sulfates: Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sedimentary Geology, 223(3-4), 265–280. doi:10.1016/j.sedgeo.2009.11.013
-
Wei, C., & Pohorille, A. (2011). Permeation of Nucleosides through Lipid Bilayers. J. Phys. Chem. B, 115(13), 3681–3688. doi:10.1021/jp112104r
-
Wilson, M. A., Wei, C., Bjelkmar, P., Wallace, B. A., & Pohorille, A. (2011). Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance. Biophysical Journal, 100(10), 2394–2402. doi:10.1016/j.bpj.2011.03.054
-
Zolensky, M., Herrin, J., Mikouchi, T., Ohsumi, K., Friedrich, J., Steele, A., … Shaddad, M. H. (2010). Mineralogy and petrography of the Almahata Sitta ureilite. Meteoritics & Planetary Science, 45(10-11), 1618–1637. doi:10.1111/j.1945-5100.2010.01128.x
- , H.E.F. & Team, A. (2011). A terrestrial analogue from Spitsbergen (Svalbard, Norway) for the Comanche carbonate at Gusev Crater. Mars. Lunar Planetary Science 42.
- Achilles, C.N., Ming, D.W., Morris, R.V. & Blake, D.F. (2011). Detection limit of smectite by the CheMin IV laboratory instrument: Preliminary implications for CheMin on the Mars Science Laboratory Mission. LPSC, 42.
- Allamandola, L.J. PAHs and Astrobiology. In: Joblin, C. & Tielens, A.G.G.M. (Eds.). PAHs and the Universe. Vol. EAS Publications Series, 46.
- Amundsen, H.E.F., Benning, L., Blake, D.F., Fogel, M., Ming, D., Skidmore, M., Steele, A. & Team, M. (2011). Cryogenic origin for Mars analog carbonates in the Bockfjord volcanic Complex. LPSC 42. Svalbard Norway.
- Anderson, R.B., Morris, R.V., Clegg, S.M., Bell III, J.F., Humphries, S.D. & Wiens, R.C. (2011). A comparison of multivariate and pre-processing methods for quantitative laser-induced breakdown spectroscopy of geologic samples. Lunar Planet. Sci., XLII.
- Blake, D.F., Treiman, A.H., Morris, R.H., Bish, D.A., H.E.F, A., Steele, A. & Team, A. (2011). Carbonate cements from the Sverrefjell and Sigurdfjell volcanoes. Lunar Planetary Science 42. Svalbard Norway.
- Cardace, D. & Hoehler, T.M. Extremophiles in serpentinizing systems. In: Rajakaruna, H.a. (Eds.). Serpentine: A Model for Evolution and Ecology. University of California Press.
- Cardace, D., Meyer-Dombard, D.R., Hoehler, T.M. & Uzunlar, N. (2010). Complex serpentinizing systems and the deep biosphere: metabolic opportunities depend on the geochemistry of mixing waters. AGU. San Francisco, CA.
- Des Marais, D.J. (2010). Exploring Mars for evidence of habitable environments and life. Proc. Amer. Phil. Soc, 154: 402-421.
- Des Marais, D.J. (2010). Formation and preservation of evidence for habitable environments on Mars. 242nd American Chemical Society Annual Meeting. Denver, CO.
- Des Marais, D.J. (20101). The new Mars: Astrobiology of a neighbor planet. GSA Annual Meeting & Exposition. Denver, CO.
- Ehlmann, B.L., Cardace, D., Hoehler, T., Blake, D. & Kelemen, P. (2011). Terrestrial serpentinizing systems as mineralogical, geochemical (and biological?) analogs for Mars. Analogue sites for Mars missions: MSL and beyond. The Woodlands, TX.
- Golden, D.C., Koster, A.M., Ming, D.W., Morris, M.S.A. & Graff, T.G. (2011). Experimental acid weathering of Fe-bearing Mars analog minerals and rocks: Implications for aqueous origin of hematite-bearing sediments in Meridiani Planum. Mars, Lunar Planet. Sci., XLII.
- Gorti, U. (2010). Gas Emission and Origin of the Hole in the TW Hya Disk. Herschel Space Observatory meeting. Goteburg, Sweden.
- Gorti, U. (2011). SPICA and Gas in Circumstellar Disks. 218th Annual Meeting of the American Astronomical Society. Boston.
- Gorti, U. (2011). Emission Lines from Gas in Circumstellar Disks. SOFIA Colloquium series. NASA Ames Research Center.
- Gorti, U. (2011). Gas Emission from Protoplanetary Disks. BAAS, 218(314).
- Gorti, U. (2011). The Evolution of Circumstellar Disks and their Dispersal: A Review. Recent Developments in Star Formation. Bangalore, India.
- Gorti, U. (2011, In Press). Disk Dispersal and Photoevaporation. BASI Conference Series.
- Hoehler, T.M. (2010). Compound extremes and energy limitation in aqueous environments on Mars: A case-study of methanogenesis in serpentinizing systems. 2010 Extremophiles Meeting. Azores, Portugal.
- Klingelhoefer, G., Morris, R.V., Blumers, M., Bernhardt, B. & Graff, T. (2011). The 2010 ILSO-ISRU field test at Mauna Kea, Hawai’i: Results from the miniaturized Moessbauer spectrometers MIMOS II and MIMOS IIA. Lunar Planet. Sci., XLII.
- McAdam, A.C., Ten Kate, I.L., Stern, J.C., Mahaffy, P.R., Blake, D.F., Morris, R.V., Steele, A., Amundson, H.E.F. & Team, A.2. (2010). Field characterization of the mineralogy and organic chemistry of carbonates from the 2010 Arctic Mars Analog Svalbard Expedition by evolved gas analysis. LPSC 42.
- McInerney, M.J., Hoehler, T.M. & Gunsalus, R.P. (2010). Introduction to hydrocarbon production: Bioenergetics. In: Timmis, K. (Eds.). Handbook of Hydrocarbon and Lipid Microbiology. Berlin: Springer-Verlag.
- Mercer, C.N. & Treiman, A.H. (2011). Energy produced from serpentinization of ultramafic rocks on terrestrial planets: Implications for sustaining microbial communities. AbGradConf.
- Morris, R.V., Ruff, S.W., Gellert, R., Ming, D.W., Arvidson, R.E., Clark, B.C., Golden, D.C., Siebach, K.L., Klingelhoefer, G., Schroeder, C., Fleischer, I., Yen, A.S. & Squyres, S.W. (2010). Discovery of carbonate-rich outcrops in the Gusev Crater Columbia Hills by the MER rover Spirit. AGU. San Francisco, CA.
- Parenteau, N. & Jahnke, L. (2011). Phototrophs and microfossils: What Yellowstone can teach us about the evolution of life on the early Earth and Mars. Montana State University Master in Science in Science Education Program. Bozeman, MT.
- Parenteau, N., Jahnke, L., Boomer, S., Cady, S. & Pierson, B. (2011). Do cyanobacteria use Fe(II) as an electron donor for photosynthesis? University of Hawai’i NAI Astrobiology Winter School, Hilo, HI.
- Parenteau, N., Jahnke, L., Cady, S. & Pierson, B. (2011). Cyanobacterial photoferrotrophy: Implications for the geochemical evolution of the early Earth and the rise of oxygen. Gordon Geobiology Conference. Ventura, CA.
- Parenteau, N., Jahnke, L., Siljeström, S. & Cady, S. (2011). Analysis of microbial mats: Lipid biomarker production and preservation in silica- and iron-depositing hot springs. Nordic – NASA Astrobiology Institute Research Project Meeting. Stockholm, Sweden.
- Parenteau, N., Valentine, P., Scapa, V., Jahnke, L., Boomer, S., Cady, S. & Pierson, B. (2010). Cyanobacterial photoferrotrophy: Implications for the geochemical evolution of the early Earth and the rise of oxygen. NAI Field Workshop: Anaerobic Phototrophic Ecosystems: Ancient and Modern. Fayetteville, NY.
- Perry, K.A., Bishop, J.L., Dyar, M.D., Blake, D.F., Peel, S. & Brown, A.J. (2011). Spectral analysis of nontronite-magnesite-olivine mixtures and implications for carbonates on Mars. LPSC 42.
- Quinn, J.E., Golden, D.C., Graff, T.G., Ming, D.W., Morris, R.V., Douglas, S., Kounaves, S.P., McKay, C.P., Tamparri, L.K., Smith, P.H., Zent, A.P. & Archer Jr., P.D. (2011). Chemistry and mineralogy of Antarctica Dry Valley soils: Implications for Mars. Lunar Planet. Sci., XLII.
- Sarrazin, P., Taylor, G.J., Blake, D., Vaniman, D. & Bish, D. (2011). XTRA: Extraterrestrial Regolith Analyzer. LPSC 42.
- Sutter, B., Ming, D.W., Boynton, W.V., Niles, P.B. & Morris, R.V. (2011). (Ca,Mg)-carbonate and Mg-carbonate at the Phoenix Landing Site: Evaluation of the Phoenix Lander’s Thermal Evolved Gas Analyzer (TEGA) using laboratory simulations. Lunar Planet. Sci., XLII.
- Tielens, A.G.G.M. & Allamandola, L.J. Cool Interstellar Physics and Chemistry. In: Khriachtchev, L. (Eds.). Physics and Chemistry at Low Temperature. Pan Stanford Publishing.
- Timmis, K. methanogenesis. In: Timmis, K. (Eds.). Handbook of Hydrocarbon and Lipid Microbiology. Berlin: Springer-Verlag.
- Wiens, R.C., Maurice, S., Bender, S., Barraclough, B.L., Cousin, A., Forni, O., Ollila, A., Newson, H., Vaniman, D., Clegg, S., Lasue, J.A., Blaney, D., DeFlores, L., Morris, R.V. & Team, t.C. (2011). Calibration of the MSL/ChemCam/LIBS remote sensing composition instrument. Lunar Planet. Sci., XLII.
- Wolfgang, A. & Laughlin, G. (2011, Submitted). Combining Kepler and HARPS Occurrence Rates to Infer the Period-Mass-Radius Distribution of Super-Earths/Sub-Neptunes. Astrophysical Journal.
2011 Teams
-
Arizona State University
Carnegie Institution of Washington
Georgia Institute of Technology
Massachusetts Institute of Technology
Montana State University
NASA Ames Research Center
NASA Goddard Space Flight Center
NASA Jet Propulsion Laboratory - Icy Worlds
NASA Jet Propulsion Laboratory - Titan
Pennsylvania State University
Rensselaer Polytechnic Institute
University of Hawaii, Manoa
University of Wisconsin
VPL at University of Washington