Notice: This is an archived and unmaintained page. For current information, please browse astrobiology.nasa.gov.

2011 Annual Science Report

NASA Ames Research Center Reporting  |  SEP 2010 – AUG 2011

Executive Summary

The Ames Team investigates the physical, chemical and biological processes that combined to create and shape early habitable environments. We trace the cosmic evolution of organic molecules from the interstellar medium, through protoplanetary disks and planetesimals, and ultimately to potentially habitable planets. We characterize the diversity of planetary systems that might emerge from protoplanetary disks. We identify diverse scenarios for the origins and early evolution of catalytic functionality and metabolic reaction networks. We develop and test a methodology for assessing quantitatively the habitability of early planetary environments – particularly Mars – via capabilities that could be deployed in situ. Our ongoing active involvement in multiple NASA missions provides context, incentives and collaborative opportunities for our research and education and public outreach programs. Please visit http://www.amesteam.arc.nasa.gov/.

Astrochemistry. We document molecular species in space that are interesting from a biogenic perspective and we seek ... Continue reading.

Field Sites
18 Institutions
4 Project Reports
71 Publications
3 Field Sites

Project Reports

  • Origins of Functional Proteins and the Early Evolution of Metabolism

    The main goal of this project is to identify critical requirements for the emergence of biological complexity in early habitable environments by examining key steps in the origins and early evolution of functional proteins and metabolic reaction networks. In particular, we investigate whether protein functionality can arise from an inventory of polymers with amino acid sequences that might have naturally existed in habitable environments. We attempt the first demonstration of multiple origins of a single enzymatic function, and investigate experimentally how primordial proteins could evolve through the diversification of their structure and function. Building on this work and on our knowledge of ubiquitous proto-cellular functions and constraints of prebiotic chemistry, we conduct computer simulations aimed at elucidating fundamental principles that govern coupled evolution of early metabolic reactions and their catalysts, and transport across cell walls.

    ROADMAP OBJECTIVES: 3.2 3.4
  • Disks and the Origins of Planetary Systems

    This task is concerned with understanding the evolution of complex habitable environments as primitive planetary bodies are forming in a developing protoplanetary disk. The planet formation process begins with the collapse of large molecular clouds into flattened disks. This disk is in many ways an astrochemical “primeval soup” in which cosmically abundant elements are assembled into increasingly complex hydrocarbons and mixed in the dust and gas envelope within the disk. Gravitational attraction among the myriad small bodies leads to planet formation. If the newly formed planet is a suitable distance from its star to support liquid water at the surface, it is in the so called “habitable zone.” The formation process and identification of such life-supporting bodies is the goal of this project.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 4.3
  • Cosmic Distribution of Chemical Complexity

    The central theme of this project is to explore the possible connections between chemistry in space and the origins of life. We start by tracking the formation and development of chemical complexity in space from simple molecules such as formaldehyde to complex species including amino and nucleic acids. The work focuses on molecular species that are interesting from a biogenic perspective and on understanding their possible roles in the origin of life on habitable worlds. We do this by measuring the spectra and chemistry of analog materials in the laboratory, by remote sensing in small spacecraft and by analysis of extraterrestrial samples returned by spacecraft or that fall to Earth as meteorites. We then use these results to interpret astronomical observations made with ground-based and orbiting telescopes.

    ROADMAP OBJECTIVES: 1.1 2.1 2.2 3.1 3.2 3.4 4.3 7.1 7.2
  • Mineralogical Traces of Early Habitable Environments

    The goal of our work is to discern the habitability (potential to support life) of ancient Martian environments, with an emphasis on understanding which environments could have supported more life than others. This information will help to guide the selection of sites on the Martian surface, for future missions designed to seek direct evidence of life. Our approach has two main parts: 1. We will use the presence of specific minerals or groups of minerals – an analysis that can be performed robotically on Mars — to constrain the chemical and physical conditions of the ancient environments in which they formed. 2. We will characterize the distribution of life on Earth in a series of environments spanning those same parameters, in order to inform the first portion of the investigation.

    ROADMAP OBJECTIVES: 2.1 5.3