Notice: This is an archived and unmaintained page. For current information, please browse astrobiology.nasa.gov.

2014 Annual Science Report

University of Hawaii, Manoa Reporting  |  SEP 2013 – DEC 2014

Executive Summary

Overview

Water is the medium in which the chemistry of all life on Earth takes place and is likely to be equally important for Astrobiology in general. Our research combines a set of interdisciplinary studies that range from the interstellar medium to the interior of planet Earth, all designed around “Water and Habitable Worlds”. Our 5-year plan includes the following research areas:

  • We don’t know where the water on Earth came from. It may have arrived trapped as gas adsorbed on dust grains as the planet accumulated mass, or it may have formed via chemical reactions on the early magma ocean, or water may have been delivered exogenously. Understanding the relative roles of each source will require astronomical observations, ice laboratory experiments, chemical and dynamical models as well as geochemical observations. The D/H ratio of Earth, including its bulk value in the mantle ...

Continue reading.

Field Sites
9 Institutions
3 Project Reports
0 Publications
0 Field Sites

Project Reports

  • Solar System Volatile Distributions – Icy Bodies

    One of the forefront areas of science related to the early solar system, and highlighted in the Planetary Decadal Survey, is the need to understand the source of volatiles for planets in the habitable zone and the role that primitive bodies played in creating habitable worlds. Comets, which have escaped the high-temperature melting and differentiation that asteroids experience, are “astrobiological time capsules” that have preserved a valuable record of the complex chemical and physical environment in the early solar Nebula. In the early 1970’s we were at the threshold of a new era of asteroid physical studies. After four decades the asteroid population is yielding information about compositional gradients in the nebula, aqueous alteration processes in the protoplanetary disk and the early dynamic environment as the giant planets formed. Similarly, large surveys of Kuiper belt objects have lead to a new understanding of the dynamic solar system architecture and of the outer solar system composition and collisional environment. Surveys are beginning to yield information on comet physical properties, including spectroscopic measurement of volatile comet outgassing at optical and IR wavelengths, nucleus sizes and activity from space and from the ground. As these surveys obtain small solar system body data, they enable a new science that involves studies of classes, secular evolution of physical characteristics and processes. Our team is undertaking several studies to directly observe the volatiles in small bodies and the mechanisms of their activity, to dis-cover and characterize objects that may represent previously unstudied reservoirs of volatiles and to discover the interrelationships between various classes of small bodies in the context of the new dynamical solar system models.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1
  • Solar System Volatile Distributions – Icy Bodies

    One of the forefront areas of science related to the early solar system, and highlighted in the Planetary Decadal Survey, is the need to understand the source of volatiles for planets in the habitable zone and the role that primitive bodies played in creating habitable worlds. Comets, which have escaped the high-temperature melting and differentiation that asteroids experience, are “astrobiological time capsules” that have preserved a valuable record of the complex chemical and physical environment in the early solar Nebula. In the early 1970’s we were at the threshold of a new era of asteroid physical studies. After four decades the asteroid population is yielding information about compositional gradients in the nebula, aqueous alteration processes in the protoplanetary disk and the early dynamic environment as the giant planets formed. Similarly, large surveys of Kuiper belt objects have lead to a new understanding of the dynamic solar system architecture and of the outer solar system composition and collisional environment. Surveys are beginning to yield information on comet physical properties, including spectroscopic measurement of volatile comet outgassing at optical and IR wavelengths, nucleus sizes and activity from space and from the ground. As these surveys obtain small solar system body data, they enable a new science that involves studies of classes, secular evolution of physical characteristics and processes. Our team is undertaking several studies to directly observe the volatiles in small bodies and the mechanisms of their activity, to dis-cover and characterize objects that may represent previously unstudied reservoirs of volatiles and to discover the interrelationships between various classes of small bodies in the context of the new dynamical solar system models.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1
  • Solar System Volatile Distributions – Icy Bodies

    One of the forefront areas of science related to the early solar system, and highlighted in the Planetary Decadal Survey, is the need to understand the source of volatiles for planets in the habitable zone and the role that primitive bodies played in creating habitable worlds. Comets, which have escaped the high-temperature melting and differentiation that asteroids experience, are “astrobiological time capsules” that have preserved a valuable record of the complex chemical and physical environment in the early solar Nebula. In the early 1970’s we were at the threshold of a new era of asteroid physical studies. After four decades the asteroid population is yielding information about compositional gradients in the nebula, aqueous alteration processes in the protoplanetary disk and the early dynamic environment as the giant planets formed. Similarly, large surveys of Kuiper belt objects have lead to a new understanding of the dynamic solar system architecture and of the outer solar system composition and collisional environment. Surveys are beginning to yield information on comet physical properties, including spectroscopic measurement of volatile comet outgassing at optical and IR wavelengths, nucleus sizes and activity from space and from the ground. As these surveys obtain small solar system body data, they enable a new science that involves studies of classes, secular evolution of physical characteristics and processes. Our team is undertaking several studies to directly observe the volatiles in small bodies and the mechanisms of their activity, to dis-cover and characterize objects that may represent previously unstudied reservoirs of volatiles and to discover the interrelationships between various classes of small bodies in the context of the new dynamical solar system models.

    ROADMAP OBJECTIVES: 1.1 2.2 3.1