2013 Annual Science Report
NASA Ames Research Center Reporting | SEP 2012 – AUG 2013
Executive Summary
The Ames Team of the NAI investigates the physical, chemical and biological processes that combined to create early habitable environments. We trace the cosmic evolution of organic molecules from the interstellar medium, through protoplanetary disks and planetesimals, and ultimately to potentially habitable planets. We characterize the diversity of planetary systems that might emerge from protoplanetary disks. We identify diverse scenarios for the origins and early evolution of catalytic functionality and metabolic reaction networks. We develop and test a methodology for assessing quantitatively the habitability of early planetary environments – particularly Mars – via capabilities that could be deployed in situ. Our ongoing active involvement in multiple NASA missions provides context, incentives and collaborative opportunities for our research and education and public outreach programs. Please visit www.amesteam.arc.nasa.gov.
Cosmic distribution of chemical complexity. This project explores the connections between chemistry in space and the origins ... Continue reading.
-
David Des Marais
NAI, ASTEP, ASTID, Exobiology -
TEAM Active Dates:
2/2009 - 1/2015 CAN 5 -
Team Website:
http://amesteam.arc.nasa.gov/ -
Members:
43 (See All) - Visit Team Page
Project Reports
-
Origins of Functional Proteins and the Early Evolution of Metabolism
The main goal of this project is to identify critical requirements for the emergence of biological complexity in early habitable environments by examining key steps in the origins and early evolution of functional proteins and metabolic reaction networks. Specifically, we investigate whether protein functionality can arise from an inventory of polypeptides that might have naturally existed in habitable environments; we attempt to demonstrate multiple origins of a single enzymatic function; we investigate how primordial proteins could evolve through the diversification of their structure and functions; and we determine how simple proteins could carry out seemingly complex functions.
ROADMAP OBJECTIVES: 3.2 3.4 -
Cosmic Distribution of Chemical Complexity
This project explores the connections between chemistry in space and the origin of life. It is comprised of three tightly interwoven tasks. We track the formation and evolution of chemical complexity in space starting with simple carbon-rich molecules such as formaldehyde and acetylene. We then move on to more complex species including amino acids, nucleic acids and polycyclic aromatic hydrocarbons. The work focuses on carbon-rich species that are interesting from a biogenic perspective and on understanding their possible roles in the origin of life on habitable worlds. We do this by measuring the spectra and chemistry of analog materials in the laboratory, by remote sensing with small spacecraft, and by analysis of extraterrestrial samples returned by spacecraft or that fall to Earth as meteorites. We then use these results to interpret astronomical observations made with ground-based and orbiting telescopes.
ROADMAP OBJECTIVES: 2.1 2.2 3.1 3.2 3.4 4.3 7.1 7.2 -
Disks and the Origins of Planetary Systems
This task is concerned with the evolution of complex habitable environments. The planet formation process begins with fragmentation of large molecular clouds into flattened disks. This disk is in many ways an astrochemical “primeval soup” in which cosmically abundant elements are assembled into increasingly complex hydrocarbons and mixed in the dust and gas within the disk. Gravitational attraction among the myriad small bodies leads to planet formation. If the newly formed planet is a suitable distance from its star to support liquid water at the surface, it is in the so-called “habitable zone.” The formation process and identification of such life-supporting bodies is the goal of this project.
ROADMAP OBJECTIVES: 1.1 1.2 2.2 3.1 4.1 4.3 -
Mineralogical Traces of Early Habitable Environments
The goal of our work is to understand how habitability (potential to support life) varies across a range of physical and chemical parameters, in order to support a long term goal of characterizing habitability of environments on Mars.
The project consists of two main components:
1. We are examining the interplay between physicochemical environment and associated microbial communities in a subsurface environment dominated by serpentinization (a reaction involving water and crustal rocks, which indicated by surface mineralogy to have occurred on ancient Mars).
2. We are working to understand how mineral assemblages can serve as a lasting record of prior environmental conditions, and therefore as indicators of prior habitability. This component directly supports the interpretation of mineralogy data obtained by the CheMin instrument on the Mars Science Laboratory.ROADMAP OBJECTIVES: 2.1 5.3
Education & Public Outreach
Publications
-
(no authors found) (2013). Comparative Climatology of Terrestrial Planets. []. doi:10.2458/azu_uapress_9780816530595
-
Bishop, J. L., Loizeau, D., McKeown, N. K., Saper, L., Dyar, M. D., Des Marais, D. J., … Murchie, S. L. (2013). What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planetary and Space Science, 86, 130–149. doi:10.1016/j.pss.2013.05.006
-
Blake, D. F., Morris, R. V., Kocurek, G., Morrison, S. M., Downs, R. T., Bish, D., … Zorzano Mier, M-P. (2013). Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 341(6153), 1239505–1239505. doi:10.1126/science.1239505
-
Boersma, C., Bregman, J. D., & Allamandola, L. J. (2013). PROPERTIES OF POLYCYCLIC AROMATIC HYDROCARBONS IN THE NORTHWEST PHOTON DOMINATED REGION OF NGC 7023. I. PAH SIZE, CHARGE, COMPOSITION, AND STRUCTURE DISTRIBUTION. The Astrophysical Journal, 769(2), 117. doi:10.1088/0004-637x/769/2/117
-
Burow, L. C., Woebken, D., Marshall, I. P., Lindquist, E. A., Bebout, B. M., Prufert-Bebout, L., … Singer, S. W. (2012). Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics. ISME J, 7(4), 817–829. doi:10.1038/ismej.2012.150
-
Cardace, D., Hoehler, T., McCollom, T., Schrenk, M., Carnevale, D., Kubo, M., & Twing, K. (2013). Establishment of the Coast Range ophiolite microbial observatory (CROMO): drilling objectives and preliminary outcomes. Sci. Dril., 16, 45–55. doi:10.5194/sd-16-45-2013
-
Chao, F-A., Morelli, A., Iii, J. C. H., Churchfield, L., Hagmann, L. N., Shi, L., … Seelig, B. (2012). Structure and dynamics of a primordial catalytic fold generated by in vitro evolution. Nat Chem Biol, 9(2), 81–83. doi:10.1038/nchembio.1138
-
Chiang, E., & Laughlin, G. (2013). The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. Monthly Notices of the Royal Astronomical Society, 431(4), 3444–3455. doi:10.1093/mnras/stt424
-
Cook, A. M., Mattioda, A. L., Quinn, R. C., Ricco, A. J., Ehrenfreund, P., Bramall, N. E., … Walker, R. (2014). SEVO ON THE GROUND: DESIGN OF A LABORATORY SOLAR SIMULATION IN SUPPORT OF THE O/OREOS MISSION. The Astrophysical Journal Supplement Series, 210(2), 15. doi:10.1088/0067-0049/210/2/15
-
Cook, A. M., Mattioda, A. L., Ricco, A. J., Quinn, R. C., Elsaesser, A., Ehrenfreund, P., … Hoffmann, S. V. (2014). The Organism/Organic Exposure to Orbital Stresses (O/OREOS) Satellite: Radiation Exposure in Low-Earth Orbit and Supporting Laboratory Studies of Iron Tetraphenylporphyrin Chloride. Astrobiology, 14(2), 87–101. doi:10.1089/ast.2013.0998
-
Cuzzi, J. N., Estrada, P. R., & Davis, S. S. (2014). UTILITARIAN OPACITY MODEL FOR AGGREGATE PARTICLES IN PROTOPLANETARY NEBULAE AND EXOPLANET ATMOSPHERES. The Astrophysical Journal Supplement Series, 210(2), 21. doi:10.1088/0067-0049/210/2/21
-
De Gregorio, B. T., Stroud, R. M., Nittler, L. R., Alexander, C. M. O. D., Bassim, N. D., Cody, G. D., … Zega, T. J. (2013). Isotopic and chemical variation of organic nanoglobules in primitive meteorites. Meteoritics & Planetary Science, 48(5), 904–928. doi:10.1111/maps.12109
-
Finke, N., Hoehler, T. M., Polerecky, L., Buehring, B., & Thamdrup, B. (2013). Competition for inorganic carbon between oxygenic and anoxygenic phototrophs in a hypersaline microbial mat, Guerrero Negro, Mexico. Environmental Microbiology, 15(5), 1532–1550. doi:10.1111/1462-2920.12032
-
Goldblatt, C., Robinson, T. D., Zahnle, K. J., & Crisp, D. (2013). Low simulated radiation limit for runaway greenhouse climates. Nature Geosci, 6(8), 661–667. doi:10.1038/ngeo1892
-
Golynskiy, M. V., Haugner, J. C., Morelli, A., Morrone, D., & Seelig, B. (2013). In Vitro Evolution of Enzymes. Enzyme Engineering, None, 73–92. doi:10.1007/978-1-62703-293-3_6
-
Haugner III, J. C., & Seelig, B. (2013). Universal labeling of 5′-triphosphate RNAs by artificial RNA ligase enzyme with broad substrate specificity. Chem. Commun., 49(66), 7322. doi:10.1039/c3cc44454f
-
Hoehler, T. M., & Jørgensen, B. B. (2013). Microbial life under extreme energy limitation. Nat Rev Micro, 11(2), 83–94. doi:10.1038/nrmicro2939
-
Jahnke, L. L., Turk-Kubo, K. A., N. Parenteau, M., Green, S. J., Kubo, M. D. Y., Vogel, M., … Des Marais, D. J. (2013). Molecular and lipid biomarker analysis of a gypsum-hosted endoevaporitic microbial community. Geobiology, 12(1), 62–82. doi:10.1111/gbi.12068
-
Jenniskens, P., Fries, M. D., Yin, Q-Z., Zolensky, M., Krot, A. N., Sandford, S. A., … Worden, S. P. (2012). Radar-Enabled Recovery of the Sutter’s Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia. Science, 338(6114), 1583–1587. doi:10.1126/science.1227163
-
Klatt, C. G., Inskeep, W. P., Herrgard, M. J., Jay, Z. J., Rusch, D. B., Tringe, S. G., … Miller, S. R. (2013). Community Structure and Function of High-Temperature Chlorophototrophic Microbial Mats Inhabiting Diverse Geothermal Environments. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00106
-
López-Puertas, M., Dinelli, B. M., Adriani, A., Funke, B., García-Comas, M., Moriconi, M. L., … Allamandola, L. J. (2013). LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN’S UPPER ATMOSPHERE. The Astrophysical Journal, 770(2), 132. doi:10.1088/0004-637x/770/2/132
-
Materese, C. K., Nuevo, M., Bera, P. P., Lee, T. J., & Sandford, S. A. (2013). Thymine and Other Prebiotic Molecules Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in Simple Astrophysical Ice Analogs. Astrobiology, 13(10), 948–962. doi:10.1089/ast.2013.1044
-
Mattioda, A., Cook, A., Ehrenfreund, P., Quinn, R., Ricco, A. J., Squires, D., … Young, A. (2012). The O/OREOS Mission: First Science Data from the Space Environment Viability of Organics (SEVO) Payload. Astrobiology, 12(9), 841–853. doi:10.1089/ast.2012.0861
-
Naraoka, H., Mita, H., Hamase, K., Mita, M., Yabuta, H., Saito, K., … Kawaguchi, J. (2012). Preliminary organic compound analysis of microparticles returned from Asteroid 25143 Itokawa by the Hayabusa mission. GEOCHEMICAL JOURNAL, 46(1), 61–72. doi:10.2343/geochemj.1.0134
-
Pappalardo, R. T., Vance, S., Bagenal, F., Bills, B. G., Blaney, D. L., Blankenship, D. D., … Soderlund, K. M. (2013). Science Potential from a Europa Lander. Astrobiology, 13(8), 740–773. doi:10.1089/ast.2013.1003
-
Pohorille, A. (2012). Processes that Drove the Transition from Chemistry to Biology: Concepts and Evidence. Orig Life Evol Biosph, 42(5), 429–432. doi:10.1007/s11084-012-9304-3
-
Pohorille, A., & Pratt, L. R. (2012). Is Water the Universal Solvent for Life?. Orig Life Evol Biosph, 42(5), 405–409. doi:10.1007/s11084-012-9301-6
-
Rigliaco, E., Pascucci, I., Gorti, U., Edwards, S., & Hollenbach, D. (2013). UNDERSTANDING THE ORIGIN OF THE [O I] LOW-VELOCITY COMPONENT FROM T TAURI STARS. The Astrophysical Journal, 772(1), 60. doi:10.1088/0004-637x/772/1/60
-
Sandford, S. A., Bernstein, M. P., & Materese, C. K. (2013). THE INFRARED SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBONS WITH EXCESS PERIPHERAL H ATOMS (H n -PAHs) AND THEIR RELATION TO THE 3.4 AND 6.9 μm PAH EMISSION FEATURES. The Astrophysical Journal Supplement Series, 205(1), 8. doi:10.1088/0067-0049/205/1/8
-
Segura, T. L., Zahnle, K., Toon, O. B., & McKay, C. P. (2013). The Effects of Impacts on the Climates of Terrestrial Planets. Comparative Climatology of Terrestrial Planets. doi:10.2458/azu_uapress_9780816530595-ch17
-
Stüeken, E. E., Anderson, R. E., Bowman, J. S., Brazelton, W. J., Colangelo-Lillis, J., Goldman, A. D., … Baross, J. A. (2013). Did life originate from a global chemical reactor?. Geobiology, 11(2), 101–126. doi:10.1111/gbi.12025
-
Traaseth, N. J., Chao, F-A., Masterson, L. R., Mangia, S., Garwood, M., Michaeli, S., … Veglia, G. (2012). Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins. Journal of Magnetic Resonance, 219, 75–82. doi:10.1016/j.jmr.2012.03.024
-
Wei, C., & Pohorille, A. (2013). Activation and Proton Transport Mechanism in Influenza A M2 Channel. Biophysical Journal, 105(9), 2036–2045. doi:10.1016/j.bpj.2013.08.030
-
Wei, C., & Pohorille, A. (2013). Permeation of Aldopentoses and Nucleosides Through Fatty Acid and Phospholipid Membranes: Implications to the Origins of Life. Astrobiology, 13(2), 177–188. doi:10.1089/ast.2012.0901
-
White, D. W., Mastrapa, R. M. E., & Sandford, S. A. (2012). Laboratory spectra of CO2 vibrational modes in planetary ice analogs. Icarus, 221(2), 1032–1042. doi:10.1016/j.icarus.2012.10.024
-
Zahnle, K. J., Catling, D. C., & Claire, M. W. (2013). The rise of oxygen and the hydrogen hourglass. Chemical Geology, 362, 26–34. doi:10.1016/j.chemgeo.2013.08.004
- Cardace, D., O’Donnell, A., Murray, D.P. & Veeger, A.I. (2013). Connecting in-service teachers to Google Earth and Google Mars through the NSF-MSP-RITES Project (Oral Talk). Paper 52-4. 48th Annual Regional Meeting of the Geological Society of America Northeastern Section Northeastern Section (18–20 March 2013).
- Demory, B.O., Seager, S., Lissauer, J. & Laughlin, G. et al. (2013). Searching for Terrestrial Planets Orbiting in the Habitable Zone of Ultra-Cool Stars and Brown Dwarfs. arXiv:1309.1078 [White paper submitted in response to the Kepler Science Office’s Call for White Papers published at http://keplergo.arc.nasa.gov/docs/Kepler-2wheels-call-1.pdf].
- Pascucci, I., Gorti, U. & Hollenbach, D. (2013). Free-free emission from Photoevaporating Disks. AAS Abstract, 221: 205.
- Zahnle, K.J. & Catling, D.C. (2013, Accepted). Waiting for O2. Special Publication of the GSA.
2013 Teams
-
Arizona State University
Carnegie Institution of Washington
Georgia Institute of Technology
Massachusetts Institute of Technology
NASA Ames Research Center
NASA Goddard Space Flight Center
NASA Jet Propulsion Laboratory - Icy Worlds
NASA Jet Propulsion Laboratory - Titan
Pennsylvania State University
Rensselaer Polytechnic Institute
University of Hawaii, Manoa
University of Illinois at Urbana-Champaign
University of Southern California
University of Wisconsin
VPL at University of Washington