2011 Annual Science Report
Montana State University Reporting | SEP 2010 – AUG 2011
BioInspired Mimetic Cluster Synthesis: Bridging the Structure and Reactivity of Biotic and Abiotic Iron-Sulfur Motifs
Project Summary
Bioinspired synthetic approaches are being utilized to bridge the gap between Fe-S minerals and highly evolved biological Fe-S metalloenzymes. Biology builds complex Fe-S clusters by first synthesizing standard Fe-S clusters and then modifying them through radical chemistry catalyzed by radical SAM enzymes. In an effort to examine hypothetical early biocatalysts, we probing simple Fe-S motifs capable of coordinating Fe-S clusters in aqueous solutions that can initiate radical chemistry.
Project Progress
The interface between mineral surfaces and early biological molecules may have played a key role in early life. Using a “top-down” approach to probing this interface, we have utilized knowledge gained from complex Fe-S cluster assembly to design an experimental pathway to examine putative early Fe-S based prebiotic catalysts. Complex Fe-S cluster assembly pathways are clearly built in a step wise fashion and involve radical chemistry (catalyzed by radical SAM enzymes) to impart unique catalytic functionality to standard Fe-S based systems. Radical SAM enzymes are found in all kingdoms of life and have been proposed to be evolutionarily ancient given their roles in central pathways including glucose and lysine metabolism, ribonucleotide reduction, DNA repair, tRNA modification and cofactor biosynthesis. Given the fundamental biochemical processes associated with radical SAM enzymes, radical SAM chemistry may have been one of the earliest functions associated with protein-based biocatalysts.
The core functionality associated with radical SAM enzymes is attributed to the presence of a site-differentiated [4Fe-4S]2+/+ cluster that coordinates SAM; this ligand binding is the key determinate to the radical mediated homolytic S+–C5’ bond cleavage of SAM and the generation of the highly reactive 5’-deoxyadenosyl radical responsible for H-atom abstraction from the multitude of substrates that this enzyme superfamily acts on. The strict conservation of the CX3CX2C motif that harbors the site-differentiated [4Fe-4S]2+/+ cluster, coupled to the concept of the functional diversification from a primordial (α/β)2 TIM barrel progenitor, has given rise for the need to biochemically define polypeptides that bind redox active, site-differentiated [4Fe-4S]2+/+ clusters. Along these lines, we have begun to explore the ability of 8-mer CX3CX2C based peptides to incorporate functional [4Fe-4S]2+/+ clusters in aqueous solution and to interact with and cleave SAM. The event of a simple peptide complex capable of carrying out radical based chemistry in aqueous solution would mark a significant occasion in the growing complexity associated with an emerging biotic world.
-
PROJECT INVESTIGATORS:
-
PROJECT MEMBERS:
Robert Szilagyi
Project Investigator
Joan Broderick
Co-Investigator
John Peters
Co-Investigator
Guana Siluvai Pitchai
Postdoc
Michael Vance
Postdoc
Logan Giles
Doctoral Student
Travis Harris
Doctoral Student
-
RELATED OBJECTIVES:
Objective 3.1
Sources of prebiotic materials and catalysts
Objective 3.2
Origins and evolution of functional biomolecules
Objective 3.3
Origins of energy transduction
Objective 3.4
Origins of cellularity and protobiological systems
Objective 7.1
Biosignatures to be sought in Solar System materials
Objective 7.2
Biosignatures to be sought in nearby planetary systems