Notice: This is an archived and unmaintained page. For current information, please browse

2009 Annual Science Report

Montana State University Reporting  |  JUL 2008 – AUG 2009

Viral Ecology and Evolution

Project Summary

This project is aimed at probing the occurrence and evolution of archaeal viruses in the extreme environments in the thermal areas in Yellowstone National Park. Viruses are the most abundant life-like entities on the planet and are likely a major reservoir of genetic diversity for all life on the planet and these studies are aimed at providing insights into the role of viruses in the evolution of early life on Earth.

4 Institutions
3 Teams
3 Publications
2 Field Sites
Field Sites

Project Progress

In recent years it has become evident that viruses have been and continue to be major drivers of evolution of life on earth. Viruses are the most abundant life-like entities on the planet and are likely a major reservoir of genetic diversity for all life on the planet. We also hypothesize that this will be the case anywhere life exists on Earth or on non-Earth like bodies. We are investigating the role of archaeal viruses present in high temperature acidic environments found in Yellowstone National Park. The specific objectives of this project are to (1) to isolate and characterize new archaeal viruses in high temperature environments and (2) to understand the role these viruses play in determining the evolution and ecology of microbial communities. This project involves extensive tool development, such as virus isolation procedures from extreme environments, extremophile virus propagation techniques, and development of genetic and biochemical assays, for the discovery and characterization of these unusual viruses. The viruses discovered to date are novel and form founding members of new virus families. Genetic and structural analyses of these viruses provide insights into the evolution of viruses on Earth, insights into the role that viruses might have played in the formation of suspected protocells of early life, and the enormous diversity of viruses present on the planet.

The goal of this research is to understand viral diversity and ecology and to link the role of viruses in the environment and the evolution of life.

    Mark Young Mark Young
    Project Investigator
    Trevor Douglas

    Jamie Snyder

    Jennifer Fulton
    Graduate Student

    Objective 5.1
    Environment-dependent, molecular evolution in microorganisms

    Objective 5.2
    Co-evolution of microbial communities

    Objective 5.3
    Biochemical adaptation to extreme environments

    Objective 6.1
    Effects of environmental changes on microbial ecosystems

    Objective 6.2
    Adaptation and evolution of life beyond Earth

    Objective 7.1
    Biosignatures to be sought in Solar System materials

    Objective 7.2
    Biosignatures to be sought in nearby planetary systems