 
        
        	The element phosphorus is important in the development and possibly origin of life on the earth. The formation of phosphorylated organics, such as those found in all life today, does not occur easily under plausible prebiotic conditions. Here I present new results on the chemistry of phosphorus in the Archean as sampled from the 3.52 billion year old limestone that shows a fundamental difference between archean phosphorus and the modern phosphate cycle. Additionally, I will show how these differences could have influenced the prebiotic chemistry of early environments from a “just add water” perspective.
 Getting Under Europa’s Skin
                    
                    Getting Under Europa’s Skin Tracing Formation and Evolution of Outer Solar System Bodies Through Stable Isotopes and Noble Gas Abundances
                    
                    Tracing Formation and Evolution of Outer Solar System Bodies Through Stable Isotopes and Noble Gas Abundances Photosynthesis, a Planetary Revolution
                    
                    Photosynthesis, a Planetary Revolution Xenon: King of the Gases
                    
                    Xenon: King of the Gases