Notice: This is an archived and unmaintained page. For current information, please browse

Exotic Earths: Hot Jupiters, Tidal Evolution, and Ocean Planets

Presenter: Sean Raymond, Laboratoire d'Astrophysique de Bordeaux
When: October 16, 2007 2:30PM PDT

Planets like Earth form via collisional accumulation of smaller bodies in circumstellar disks. However, there exist systematic differences between the formation environment of Earth-like planets around other stars and that of the Solar System. For example, short-lived radionuclides (SLRs) like 26Al were an important heat source in the Solar System and may have been derived from a nearby supernova. However, SLRs have variable abundances in protoplanetary disks because of orbital variations within stellar clusters which determine the proximity to supernovae. The quantity of SLRs can be directly tied to the water abundance of terrestrial planets. In addition, the habitable zones of low-mass stars are very close-in, which affects the ability of habitable planets to have large masses or retain water, and can also cause large orbital changes via tidal dissipation. About 60 “hot Jupiters” are currently known; these giant planets likely formed farther from their stars and migrated inward through the habitable zone. Ocean-covered planets are often able to form in the “wake” of a migrating giant planet.

University of Washington Seminars

  • The University of Washington seminar series is hosted by the NAI Virtual Planetary Lab (VPL) team live from the University of Washington campus in Seattle.
  • Subscribe to this series

Other Seminars in this Series