2013 Annual Science Report
VPL at University of Washington Reporting | SEP 2012 – AUG 2013
Executive Summary
The Virtual Planetary Laboratory’s interdisciplinary research effort focuses on answering a single key question in astrobiology: If we were to find a terrestrial planet orbiting a distant star, how would we go about recognizing signs of habitability and life on that planet? This question is relevant to the search for life beyond our Solar System, as outlined in NASA’s Astrobiology Roadmap Goals 1 and 7. VPL research spans many of the Roadmap objectives, but is most relevant to Objectives 1.1 (Formation and Evolution of Habitable Planets), 1.2 (Indirect and Direct Observations of Extrasolar Habitable Planets) and 7.2 (Biosignatures to be Sought in Nearby Planetary Systems).
Recent observations have brought us much closer to identifying extrasolar environments that could support life. The successful Kepler Mission has found over three thousand planetary candidates – many of them smaller than twice the diameter of the Earth – which may reside in the habitable zones of their parent stars. Kepler’s large survey has improved our understanding of how common terrestrial planets are in the Galaxy, and the planned James Webb Space Telescope (JWST) will probe the atmospheric composition of super-Earths. In the longer term, we anticipate spaceborne telescopes, such as NASA’s Terrestrial Planet Finder concept, that can directly image and obtain spectroscopy of terrestrial extrasolar planets.
The VPL provides a scientific foundation for interpretation of data from extrasolar terrestrial planet detection and characterization missions such as Kepler, JWST and the TPF. To do this, the VPL uses information from Earth’s stages of evolution, and data provided by NASA’s Earth observing and planetary exploration programs, to validate and develop more comprehensive models of terrestrial planets. These models allow us to simulate and explore the likely diversity of extrasolar planet environments in advance of the more challenging observations. These models are primarily used to understand the radiative and gravitational effects of stars on the planets that orbit them. Combinations of model and fieldwork are also used to understand which biologically produced gases can produce a detectable biosignature in globally-averaged planetary observations. Finally, models and instrument simulators are used to understand how we can best extract information on a planet’s environment from data that has no direct spatial resolution and may be quite limited in other ways.
The team required to develop and run these models is necessarily highly interdisciplinary. Our research encompasses single discipline efforts that produce results pertinent to our overarching habitability and biosignatures focus, all the way through to highly interdisciplinary efforts where stellar astrophysicists, planetary climate modelers, orbital dynamicists, atmospheric chemists and biologists work together to determine the effects of stellar radiation and gravitation on the habitability of terrestrial planets.
Our Research This Year
Our research can be divided into five main tasks: Earth as an Extrasolar Planet, Early Earth and Mars, The Habitable Planet, and The Living Planet and The Observer.
Earth as an Extrasolar Planet.
In this task we use observations of our home planet to explore the detectability of signs of habitability and life on terrestrial planets. In collaboration with LCROSS mission scientists, this year Robinson, Meadows and Sparks performed a comparison of predictions from the VPL 3-D spectral Earth model with UV to infrared spectra of the Earth obtained by the LCROSS mission (Robinson et al., submitted). This comparison was used to validate our predictions of the detectability and spectral dependence of glint from the Earth’s ocean, and it also revealed an error in the spectral calibration of data from the LCROSS mission, which we were able to help correct. We also discuss using the UV Hartley band of ozone as a biosignature. This year we also added N2-N2 collisionally-induced absorption (CIA) to the VPL Earth model. The updated model has been used to demonstrate that N2-N2 CIA is required to fit the spectral region near 4.1um in Earth spectra taken by the NASA/EPOXI mission (Schwieterman et al., in prep). Detection of N2-N2 CIA in a planet’s spectrum can help constrain surface pressure and, thus, surface habitability. We also completed spectral libraries of the Earth’s appearance through a Lunar month as a simulated dataset for studies of observations of the Earth from a lunar platform.
Early Earth and Mars:
In this task we work to understand the early Earth and Mars environments, both of which serve as potential analogs for habitable environments unlike those seen on Earth today. In our early Mars studies on surface environments, David Catling and collaborators completed work on understanding the origin and abundance of carbonates on Mars (Niles et al., 2013), and the environmental implications of clay minerals (Ehlmann et al., 2013). Photochemical modeling of the formation of salts from the oxidation of gases in the atmosphere of early Mars was also performed (Smith et al., 2013). Ongoing efforts include work on the possibility of oceans on Mars and the formation of salts in the soil. Kasting, Ramirez, Kopparapu, Robinson, Freedman and Zugger collaborated on studies of the warming of Early Mars by using CO2 and H2 (Ramirez et al., 2013). They modeled the origin, abundance and lifetime of CO2 in the early Martian environment, and investigated the possible abundance of H2 on early Mars, since H2 can act as a secondary greenhouse gas via collision-induced absorption.
For studies of the early Earth’s environment, we made progress in the areas of Earth’s geochemical history and its implications for life, climate evolution, and the evolution of atmospheric oxygen levels. Studying the Earth’s geochemistry, Buick and colleagues discovered a soluble and reactive phosphorus species (phosphite) in early Archean carbonates (Pasek et al., 2013) that was likely of meteoritic origin. Phosphite’s delivery during the Late Heavy Bombardment may have driven chemistry to form cell membranes and make nucleotides, a precursor to the RNA World hypothesis for the origin of life. Team members also explore the effectiveness of H2 as a greenhouse gas on the early Earth (Wordsworth and Pierrehumbert, 2013) with commentary on the paper from team member Kasting (Kasting 2013c). In understanding the history of O2 in the Earth’s atmosphere we outlined possible causes for the first rise of oxygen at ~2.5 Ga. (Kasting, 2013a, 2013b), and a framework for understanding both the first and second rise of oxygen was provided (Catling, 2013a, 2013b). Zahnle reviewed the importance of hydrogen escape for the oxygenation of the Earth’s atmosphere (Zahnle et al., 2013). Catling and Krissansen-Totton are currently re-examining the multi-billion year record of marine carbon and sulfur isotopes to derive optimal statistical estimates of their implications for oxygen fluxes into the atmosphere and ocean. Domagal-Goldman and Robinson are working to generalize our 1-D atmospheric chemistry and climate models and automate changes in boundary conditions. This will allow us to rapidly run the models for a variety of conditions, to quantify the effects of specific metabolism on the atmospheric evolution of the Earth.
Habitable Planets
VPL’s core research is in the area of planetary habitability, and this task explores the effect of interactions between the potentially habitable planet, its star, other planets in the system, and the host galaxy. This year, exploration of these factors that affect habitability included work on planet formation, internal properties, atmospheric evolution, orbital dynamics, and the limits of the habitable zone. Raymond provided in-depth reviews of planet formation for the periodic international meeting Protostars and Planets 6. (Raymond et al., 2013a; Davies et al., 2013). He and his students also considered numerous accretional phenomena such as a final accumulation of volatiles (Raymond et al., 2013b), the distribution of dust left over from formation (Bosnor et al., 2013), and planetary migration (Pierens, et al., 2013). Additionally, Timpe, Barnes, Kopparapu, Raymond and colleagues demonstrated that the observed orbital dynamics of multi-planet systems naturally arises from the ejection of fully formed planets at the very end of planet formation (Timpe et al., 2013).
VPL also modeled the environments at the planetary system-galaxy interface. These regions are far from the host star and hence features can be more easily detected as the starlight can be separated. We showed that systems that eject planets can have cometary reservoirs that are closer in than that in the Solar System (Raymond & Armitage, 2013). We also showed that distant stellar companions can disrupt planetary systems on long timescales after close stellar passages perturb the binary star’s orbit (Kaib et al., 2013). Ongoing work by Deitrick and Barnes explored the stability of planets on mutually-inclined orbits (Dietrick et al., in prep).
We also explored the direct effect of the star’s gravity on planetary habitability for a number of different scenarios. In Barnes et al (2013), Barnes, Goldblatt, Meadows, Kasting and colleagues showed that tidal heating can trigger a runaway greenhouse on planets in the habitable zones of M dwarf stars, and especially for those that have planetary companions that can maintain the planet’s orbital eccentricity. A “tidal greenhouse” can be maintained for upwards of 1 Gyr prior to circularization and hence planets can evolve into the habitable zone after losing all their primordial water content. Barnes & Heller (2013) showed that a tidal-heating generated greenhouse is also possible on planets in the habitable zones of white dwarfs and brown dwarfs. For these planets, eccentricities as small as 10-6 can be sufficient to trigger the runaway greenhouse, severely limiting the chances that they may support life. Heller & Barnes (2013) showed that exomoons are also in danger of a tidal greenhouse. Luger and Barnes explored the evolution of atmospheric loss for small gas-dominated planets under the combined effects of stellar radiation and orbital evolution (Luger et al., in prep). Armstrong, Barnes, Domagal-Goldman and Meadows worked together on understanding the coupled effects of obliquity and orbital evolution on planetary climate and surface ice coverage (Armstrong et al., submitted).
VPL also looks at internal planetary processes and how these may impact habitability, and in turn be impacted by life. This year Driscoll wrote a numerical program to model the internal evolution of the mantle and core of a rocky terrestrial planet. This model includes radioactive heat generation, heat loss due to mantle melting, inner core growth, and magnetic field generation in the outer core. Work is underway to add tidal heating to explore the effect of this process on outgassing and habitability. Sleep et al., (2013, submitted) discuss the state of the mantle and crust soon after the moon-forming impact, the influence of lunar induced earth-tides on these zones, and the fate of CO2 in the mantle and atmosphere in the Hadean. Sleep and colleagues also looked at the partitioning of radionuclides in the Earth’s mantle, crust and hydrosphere as the result of biologically mediated geochemical evolution (Sleep et al., 2013). Bolton is working on code efficiency improvements for quantifying CO2 draw-down from the atmosphere by weathering of soils derived from idealized granite and basalt rock types. This modeling is being done to find the influence of atmospheric composition, temperature, and infiltration rates on CO2 consumption.
We also continued to refine the climatic limits of planetary habitability and the habitable zone. Kopparapu, Ramirez, Robinson, Kasting and collaborators updated and validated a 1-D radiative-convective climate model with new water and carbon-dioxide absorption coefficients to recalculate habitable zone limits around stars of different spectral types (Kopparapu et al., 2013a). Using these results Kopparapu and colleagues estimated the occurrence rate of Earth-size planets around Kepler M-stars to be between 40%-50% (Kopparapu et al., 2013b). Shields, Meadows, Bitz, Pierrehumbert and collaborators studied the near-IR ice-albedo effect on planets in the middle of the habitable zone of M-stars, and found that planets orbiting M stars are more stable against sustained low-latitude glaciation than planets orbiting F or G stars (Shields et al., 2013). Goldblatt, Robinson, Zahnle and Crisp also used updated spectral databases to calculate a new limit for a planet undergoing a runaway greenhouse, and showed that the Earth is closer to this limit than previously thought (Goldblatt et al., 2013).
The Living Planet
In this research area, VPL team members use modeling, laboratory and field work to understand the co-evolution of the biosphere with its environment, and the limits of life. Kiang, Mielke and colleagues continued testing the photon use efficiency of the bacterium Acarychloris marina, which photosynthesizes at longer than usual wavelengths, serving as an example of an organism adapted to the longer wavelength light environments that might be found around M dwarf stars. They used models to identify the likely trap wavelengths (Mielke et al., 2013) and further work being prepared for publication has confirmed dips in efficiency between the trap wavelengths. Blankenship and Kiang conducted field expeditions to gather further long-wavelength-using cyanobacteria, which are currently being cultured. Hoehler and Parenteau are initiating studies of the impact of anoxygenic photosynthesis on its environment, Parenteau conducted field reconnaissance to Yellowstone to locate anoxygenic mats that will subsequently be analyzed for biogenic gases and volatile organics. A new anaerobic chamber has been purchased and installed at NASA Ames and small vessels are being developed to allow testing of the mats under different environmental parameters such as starting atmosphere and radiation environment. The Biological Pigments Database of the VPL Spectral Library was also officially launched this year and is intended for community use: (http://vplapps.astro.washington.edu/pigments). Seifert continues to study the biology of Cuatro Cienegas, in collaboration with the NAI ASU team and astrobiologists in Mexico. They conducted two field trips last year with several papers in progress. Black and Keller performed laboratory studies that suggest that the joining of RNA and fatty acids to form the first cells may have been assisted by a natural chemical affinity between these components (Black et al., 2013).
The Observer
In this task we explore the detectability of signs of habitability and life for modeled observations from the previous tasks. We also observe and retrieve environmental properties of Solar System planets and exoplanets, and generate improved retrieval algorithms for exoplanet data.
This year Misra, with Crisp and Meadows, completed modification of the VPL’s line-by-line radiative transfer model (SMART) to generate transit transmission spectra (Misra et al., in prep). The model includes gas absorption, cloud and aerosol extinction, refraction, and the effects of stellar limb darkening. The model has been validated against ATMOS limb spectra of the Earth and lunar eclipse spectra, which provide a proxy for Earth seen in transmission. We find that the inclusion of refraction decreases the detectability of spectral absorption features in transit transmission, and that this effect is dependent on atmospheric composition, the size of the star, and the planet-star distance (Misra et al., in prep). We have used the model to show that simultaneous measurements of the absorption features from the O2-O2 dimer molecule and molecular oxygen (O2) can be used as a new technique to probe planetary atmospheric pressure for oxygenated atmospheres and biosignatures (Misra et al., 2013, in press).
In other biosignature research, Domagal-Goldman, Segura, Claire and Meadows completed a study into the generation of abiotic false positives for ozone for early Earth-type planets in orbit around M dwarf stars (Domagal-Goldman, in prep). Segura and colleagues calculated a possible maximum methane production for the abiotic process of serpentinization and for a planet of Earth-like composition (Guzmán-Marmolejo et al., 2013). Schwieterman and Meadows collaborated with Cockell of the UK Center for Astrobiology to explore the detectability of non-photosynthetic pigments, especially for halophiles, in an Earth-like planet’s disk-averaged spectra (Schwieterman et al., in prep). Catling, with Robinson and Krissanson-Totton initiated a study of thermodynamic disequilibrium in planetary atmospheres. A first step in understanding physical entropy in planetary atmospheres resulted in a paper that improved our generalized understanding of the origin and maintenance of atmospheric vertical temperature and pressure structures (Robinson and Catling, 2013). This understanding can also be used as an initial framework to improve retrieval of exoplanetary atmospheric properties and structure.
In planetary observation research, observations of Venus, an analog for a hot, haze covered exoplanet, were obtained by Arney and Meadows at the Apache Point Observatory. These observations were used to produce the first simultaneous spatially-resolved maps of retrieved H2O, HCl, CO, OCS, and SO2 abundances in the Venusian lower atmosphere, revealing surprising hemispherical dichotomies that are still unexplained, but that may be due to cloud processes (Arney et al., in prep). Gao, Yung, Crisp and colleagues validated a generalized 1-D microphysical and vertical transport cloud model for use in the VPL 1-D Climate Model against Venus data and revealed an oscillatory “rain out” of the Venus clouds in the process (Gao et al., 2013, in press). Bailey, Agol, Barnes, Raymond and collaborators continued their work searching for extrasolar terrestrial planets using radial velocity surveys and Kepler data and discovered some of the most habitable planets to date, as well as a unique system with definitely 3, and possibly 5 planets in the habitable zone of its parent M dwarf star (Agol et al. 2013; Anglada-Escude et al., 2013). Deming, Agol, Dobbs-Dixon and Wilkins used HST to observe transiting giant exoplanets with a new spatial scanning mode, greatly improving the observational sensitivity (Deming et al., 2013). They detected water vapor in several of these planets and are now extending the new technique to smaller planets. Deming and Sheets pioneered a new statistical technique to study the atmospheres of super-Earth planets discovered by Kepler. Line, Crisp and Yung developed, tested, and published the relative performance of three commonly used remote sensing retrieval algorithms (optimal estimation, Markov-Chain Monte Carlo, and Bootstrap Monte Carlo) for interpreting realistic, synthetic spectra of exoplanets. (Line et al., 2013).
Education and Public Outreach
We completed our interactives “Extreme Planet Makeover” where users get to change parameters to control the appearance and habitability of their world, and a second interactive Eyes on Exoplanets 3D to allow users to visualize the position of known planetary systems on the sky, and learn about their potential habitability. Looking forward to outreach products under the new award, we have organized two Science Café experiences where VPL scientists (Rory Barnes and Aomawa Shields) present to and mingle with the public in bars and cafes. The theme for our two Science on a Sphere shows at the Pacific Science Center in Seattle have been determined, they are The Earth Through Time and Signatures of Habitability and Life, and work is underway to develop these shows in collaboration with VPL scientists. The UW VPL contingent hosted the Lakewood High Astrobiology class again this year for a field trip to UW to learn about astrobiology research. Several of our scientists again gave public lectures this year, Lucianne Walkowicz pioneered Science Train, an interaction between scientists and the public in the New York subway, and VPL research was featured in numerous popular science magazines, newspapers and television documentaries.
Publications
-
Anglada-Escudé, G., Tuomi, M., Gerlach, E., Barnes, R., Heller, R., Jenkins, J. S., … Jones, H. R. A. (2013). A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone. A&A, 556, A126. doi:10.1051/0004-6361/201321331
-
Atreya, S. K., Trainer, M. G., Franz, H. B., Wong, M. H., Manning, H. L. K., Malespin, C. A., … Navarro-González, R. (2013). Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss. Geophysical Research Letters, 40(21), 5605–5609. doi:10.1002/2013gl057763
-
Barclay, T., Rowe, J. F., Lissauer, J. J., Huber, D., Fressin, F., Howell, S. B., … Thompson, S. E. (2013). A sub-Mercury-sized exoplanet. Nature, 494(7438), 452–454. doi:10.1038/nature11914
-
Barnes, R., & Heller, R. (2013). Habitable Planets Around White and Brown Dwarfs: The Perils of a Cooling Primary. Astrobiology, 13(3), 279–291. doi:10.1089/ast.2012.0867
-
Barnes, R., Mullins, K., Goldblatt, C., Meadows, V. S., Kasting, J. F., & Heller, R. (2013). Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating. Astrobiology, 13(3), 225–250. doi:10.1089/ast.2012.0851
-
Becker, A. C., Kundurthy, P., Agol, E., Barnes, R., Williams, B. F., & Rose, A. E. (2013). OBSERVATIONS OF THE WASP-2 SYSTEM BY THE APOSTLE PROGRAM. The Astrophysical Journal, 764(1), L17. doi:10.1088/2041-8205/764/1/l17
-
Black, R. A., Blosser, M. C., Stottrup, B. L., Tavakley, R., Deamer, D. W., & Keller, S. L. (2013). Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells. Proceedings of the National Academy of Sciences, 110(33), 13272–13276. doi:10.1073/pnas.1300963110
-
Bonsor, A., Raymond, S. N., & Augereau, J-C. (2013). The short-lived production of exozodiacal dust in the aftermath of a dynamical instability in planetary systems. Monthly Notices of the Royal Astronomical Society, 433(4), 2938–2945. doi:10.1093/mnras/stt933
-
Borucki, W. J., Agol, E., Fressin, F., Kaltenegger, L., Rowe, J., Isaacson, H., … Winn, J. N. (2013). Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone. Science, 340(6132), 587–590. doi:10.1126/science.1234702
-
Carter, J. A., & Agol, E. (2013). THE QUASIPERIODIC AUTOMATED TRANSIT SEARCH ALGORITHM. The Astrophysical Journal, 765(2), 132. doi:10.1088/0004-637x/765/2/132
-
Cossou, C., Raymond, S. N., & Pierens, A. (2013). Convergence zones for Type I migration: an inward shift for multiple planet systems. A&A, 553, L2. doi:10.1051/0004-6361/201220853
-
De Lee, N., Ge, J., Crepp, J. R., Eastman, J., Esposito, M., FemeníA, B., … Zhao, B. (2013). VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. V. A LOW ECCENTRICITY BROWN DWARF FROM THE DRIEST PART OF THE DESERT, MARVELS-6b. The Astronomical Journal, 145(6), 155. doi:10.1088/0004-6256/145/6/155
-
Deming, D., Wilkins, A., McCullough, P., Burrows, A., Fortney, J. J., Agol, E., … Showman, A. P. (2013). INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE. The Astrophysical Journal, 774(2), 95. doi:10.1088/0004-637x/774/2/95
-
Dobbs-Dixon, I., & Agol, E. (2013). Three-dimensional radiative-hydrodynamical simulations of the highly irradiated short-period exoplanet HD 189733b. Monthly Notices of the Royal Astronomical Society, 435(4), 3159–3168. doi:10.1093/mnras/stt1509
-
Eastman, J., Gaudi, B. S., & Agol, E. (2013). EXOFAST: A Fast Exoplanetary Fitting Suite in IDL. Publications of the Astronomical Society of the Pacific, 125(923), 83–112. doi:10.1086/669497
-
Farquhar, J., Cliff, J., Zerkle, A. L., Kamyshny, A., Poulton, S. W., Claire, M., … Harms, B. (2013). Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes. Proceedings of the National Academy of Sciences, 110(44), 17638–17643. doi:10.1073/pnas.1218851110
-
Gao, P., Zhang, X., Crisp, D., Bardeen, C. G., & Yung, Y. L. (2014). Bimodal distribution of sulfuric acid aerosols in the upper haze of Venus. Icarus, 231, 83–98. doi:10.1016/j.icarus.2013.10.013
-
Goldblatt, C., Robinson, T. D., Zahnle, K. J., & Crisp, D. (2013). Low simulated radiation limit for runaway greenhouse climates. Nature Geosci, 6(8), 661–667. doi:10.1038/ngeo1892
-
Greenberg, R., Van Laerhoven, C., & Barnes, R. (2013). Spin-driven tidal pumping: tidally driven changes in planetary spin coupled with secular interactions between planets. Celestial Mechanics and Dynamical Astronomy, 117(4), 331–348. doi:10.1007/s10569-013-9518-3
-
Guzmán-Marmolejo, A., Segura, A., & Escobar-Briones, E. (2013). Abiotic Production of Methane in Terrestrial Planets. Astrobiology, 13(6), 550–559. doi:10.1089/ast.2012.0817
-
Heller, R., & Barnes, R. (2013). Exomoon Habitability Constrained by Illumination and Tidal Heating. Astrobiology, 13(1), 18–46. doi:10.1089/ast.2012.0859
-
Kaib, N. A., Raymond, S. N., & Duncan, M. (2013). Planetary system disruption by Galactic perturbations to wide binary stars. Nature, 493(7432), 381–384. doi:10.1038/nature11780
-
Kane, S. R., Hinkel, N. R., & Raymond, S. N. (2013). SOLAR SYSTEM MOONS AS ANALOGS FOR COMPACT EXOPLANETARY SYSTEMS. The Astronomical Journal, 146(5), 122. doi:10.1088/0004-6256/146/5/122
-
Kasting, J. F. (2013). How Was Early Earth Kept Warm?. Science, 339(6115), 44–45. doi:10.1126/science.1232662
-
Kasting, J. F. (2013). What caused the rise of atmospheric O2?. Chemical Geology, 362, 13–25. doi:10.1016/j.chemgeo.2013.05.039
-
Kasting, J. F., Kopparapu, R., Ramirez, R. M., & Harman, C. E. (2013). Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. Proceedings of the National Academy of Sciences, 111(35), 12641–12646. doi:10.1073/pnas.1309107110
-
Kopparapu, R. K. (2013). A REVISED ESTIMATE OF THE OCCURRENCE RATE OF TERRESTRIAL PLANETS IN THE HABITABLE ZONES AROUND KEPLER M-DWARFS. The Astrophysical Journal, 767(1), L8. doi:10.1088/2041-8205/767/1/l8
-
Kopparapu, R. K., Ramirez, R., Kasting, J. F., Eymet, V., Robinson, T. D., Mahadevan, S., … Deshpande, R. (2013). HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES. The Astrophysical Journal, 765(2), 131. doi:10.1088/0004-637x/765/2/131
-
Kounaves, S. P., Carrier, B. L., O’Neil, G. D., Stroble, S. T., & Claire, M. W. (2014). Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics. Icarus, 229, 206–213. doi:10.1016/j.icarus.2013.11.012
-
Kundurthy, P., Barnes, R., Becker, A. C., Agol, E., Williams, B. F., Gorelick, N., & Rose, A. (2013). APOSTLE: LONGTERM TRANSIT MONITORING AND STABILITY ANALYSIS OF XO-2b. The Astrophysical Journal, 770(1), 36. doi:10.1088/0004-637x/770/1/36
-
Kundurthy, P., Becker, A. C., Agol, E., Barnes, R., & Williams, B. (2013). APOSTLE: 11 TRANSIT OBSERVATIONS OF TrES-3b. The Astrophysical Journal, 764(1), 8. doi:10.1088/0004-637x/764/1/8
-
Kurzweil, F., Claire, M., Thomazo, C., Peters, M., Hannington, M., & Strauss, H. (2013). Atmospheric sulfur rearrangement 2.7 billion years ago: Evidence for oxygenic photosynthesis. Earth and Planetary Science Letters, 366, 17–26. doi:10.1016/j.epsl.2013.01.028
-
Lammer, H., Blanc, M., Benz, W., Fridlund, M., Foresto, V. C. d., Güdel, M., … Raymond, S. N. (2013). The Science of Exoplanets and Their Systems. Astrobiology, 13(9), 793–813. doi:10.1089/ast.2013.0997
-
Leshin, L. A., Mahaffy, P. R., Webster, C. R., Cabane, M., Coll, P., Conrad, P. G., … Moores, J. E. (2013). Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 341(6153), 1238937–1238937. doi:10.1126/science.1238937
-
Lewis, A. R., Quinn, T., & Kaib, N. A. (2013). THE INFLUENCE OF OUTER SOLAR SYSTEM ARCHITECTURE ON THE STRUCTURE AND EVOLUTION OF THE OORT CLOUD. The Astronomical Journal, 146(1), 16. doi:10.1088/0004-6256/146/1/16
-
Line, M. R., Wolf, A. S., Zhang, X., Knutson, H., Kammer, J. A., Ellison, E., … Yung, Y. L. (2013). A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. I. A COMPARISON OF ATMOSPHERIC RETRIEVAL TECHNIQUES. The Astrophysical Journal, 775(2), 137. doi:10.1088/0004-637x/775/2/137
-
Lissauer, J. J., Jontof-Hutter, D., Rowe, J. F., Fabrycky, D. C., Lopez, E. D., Agol, E., … Welsh, W. F. (2013). ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES. The Astrophysical Journal, 770(2), 131. doi:10.1088/0004-637x/770/2/131
-
Ma, B., Ge, J., Barnes, R., Crepp, J. R., De Lee, N., Dutra-Ferreira, L., … Zhao, B. (2012). VERY-LOW-MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. III. A SHORT-PERIOD BROWN DWARF CANDIDATE AROUND AN ACTIVE G0IV SUBGIANT. The Astronomical Journal, 145(1), 20. doi:10.1088/0004-6256/145/1/20
-
Mahaffy, P. R., Webster, C. R., Atreya, S. K., Franz, H., Wong, M., Conrad, P. G., … Moores, J. E. (2013). Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 341(6143), 263–266. doi:10.1126/science.1237966
-
Marty, B., Alexander, C. M. O., & Raymond, S. N. (2013). Primordial Origins of Earth’s Carbon. Reviews in Mineralogy and Geochemistry, 75(1), 149–181. doi:10.2138/rmg.2013.75.6
-
Mazeh, T., Nachmani, G., Holczer, T., Fabrycky, D. C., Ford, E. B., Sanchis-Ojeda, R., … Welsh, W. (2013). TRANSIT TIMING OBSERVATIONS FROM KEPLER . VIII. CATALOG OF TRANSIT TIMING MEASUREMENTS OF THE FIRST TWELVE QUARTERS. The Astrophysical Journal Supplement Series, 208(2), 16. doi:10.1088/0067-0049/208/2/16
-
McLennan, S. M., Anderson, R. B., Bell, J. F., Bridges, J. C., Calef, F., Campbell, J. L., … Moores, J. E. (2013). Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 343(6169), 1244734–1244734. doi:10.1126/science.1244734
-
Mielke, S. P., Kiang, N. Y., Blankenship, R. E., & Mauzerall, D. (2013). Photosystem trap energies and spectrally-dependent energy-storage efficiencies in the Chl d-utilizing cyanobacterium, Acaryochloris marina. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1827(3), 255–265. doi:10.1016/j.bbabio.2012.11.002
-
Misra, A., Meadows, V., Claire, M., & Crisp, D. (2014). Using Dimers to Measure Biosignatures and Atmospheric Pressure for Terrestrial Exoplanets. Astrobiology, 14(2), 67–86. doi:10.1089/ast.2013.0990
-
Pasek, M. A., Harnmeijer, J. P., Buick, R., Gull, M., & Atlas, Z. (2013). Evidence for reactive reduced phosphorus species in the early Archean ocean. Proceedings of the National Academy of Sciences, 110(25), 10089–10094. doi:10.1073/pnas.1303904110
-
Pierens, A., Cossou, C., & Raymond, S. N. (2013). Making giant planet cores: convergent migration and growth of planetary embryos in non-isothermal discs. A&A, 558, A105. doi:10.1051/0004-6361/201322123
-
Ramirez, R. M., Kopparapu, R., Zugger, M. E., Robinson, T. D., Freedman, R., & Kasting, J. F. (2013). Warming early Mars with CO2 and H2. Nature Geosci, 7(1), 59–63. doi:10.1038/ngeo2000
-
Raymond, S. N., & Armitage, P. J. (2012). Mini-Oort clouds: compact isotropic planetesimal clouds from planet-planet scattering. Monthly Notices of the Royal Astronomical Society: Letters, 429(1), L99–L103. doi:10.1093/mnrasl/sls033
-
Raymond, S. N., Schlichting, H. E., Hersant, F., & Selsis, F. (2013). Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus, 226(1), 671–681. doi:10.1016/j.icarus.2013.06.019
-
Robinson, T. D., & Catling, D. C. (2012). AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES. The Astrophysical Journal, 757(1), 104. doi:10.1088/0004-637x/757/1/104
-
Robinson, T. D., & Catling, D. C. (2013). Common 0.1 bar tropopause in thick atmospheres set by pressure-dependent infrared transparency. Nature Geosci, 7(1), 12–15. doi:10.1038/ngeo2020
-
Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., … Wagner, G. (2013). The HITRAN2012 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 130, 4–50. doi:10.1016/j.jqsrt.2013.07.002
-
Rushby, A. J., Claire, M. W., Osborn, H., & Watson, A. J. (2013). Habitable Zone Lifetimes of Exoplanets around Main Sequence Stars. Astrobiology, 13(9), 833–849. doi:10.1089/ast.2012.0938
-
Sanromá, E., Pallé, E., Parenteau, M. N., Kiang, N. Y., Gutiérrez-Navarro, A. M., López, R., & Montañés-Rodríguez, P. (2013). CHARACTERIZING THE PURPLE EARTH: MODELING THE GLOBALLY INTEGRATED SPECTRAL VARIABILITY OF THE ARCHEAN EARTH. The Astrophysical Journal, 780(1), 52. doi:10.1088/0004-637x/780/1/52
-
Shields, A. L., Meadows, V. S., Bitz, C. M., Pierrehumbert, R. T., Joshi, M. M., & Robinson, T. D. (2013). The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets. Astrobiology, 13(8), 715–739. doi:10.1089/ast.2012.0961
-
Siefert, J. L. (2012). Man and his spaceships. Mobile Genetic Elements, 2(6), 272–278. doi:10.4161/mge.23238
-
Sleep, N. H., Bird, D. K., & Rosing, M. T. (2013). BIOLOGICAL EFFECTS ON THE SOURCE OF GEONEUTRINOS. Int. J. Mod. Phys. A, 28(30), 1330047. doi:10.1142/s0217751×13300470
-
Som, S. M., Hagadorn, J. W., Thelen, W. A., Gillespie, A. R., Catling, D. C., & Buick, R. (2013). Quantitative discrimination between geological materials with variable density contrast by high resolution X-ray computed tomography: An example using amygdule size-distribution in ancient lava flows. Computers & Geosciences, 54, 231–238. doi:10.1016/j.cageo.2012.11.019
-
Stark, C. C., Boss, A. P., Weinberger, A. J., Jackson, B. K., Endl, M., Cochran, W. D., … Li, J. (2013). A SEARCH FOR EXOZODIACAL CLOUDS WITH KEPLER. The Astrophysical Journal, 764(2), 195. doi:10.1088/0004-637x/764/2/195
-
Steffen, J. H., Fabrycky, D. C., Agol, E., Ford, E. B., Morehead, R. C., Cochran, W. D., … Twicken, J. D. (2012). Transit timing observations from Kepler – VII. Confirmation of 27 planets in 13 multiplanet systems via transit timing variations and orbital stability. Monthly Notices of the Royal Astronomical Society, 428(2), 1077–1087. doi:10.1093/mnras/sts090
-
Stüeken, E. E., Catling, D. C., & Buick, R. (2012). Contributions to late Archaean sulphur cycling by life on land. Nature Geosci, 5(10), 722–725. doi:10.1038/ngeo1585
-
Stüeken, E. E., Foriel, J., Nelson, B. K., Buick, R., & Catling, D. C. (2013). Selenium isotope analysis of organic-rich shales: advances in sample preparation and isobaric interference correction. J. Anal. At. Spectrom., 28(11), 1734. doi:10.1039/c3ja50186h
-
Timpe, M., Barnes, R., Kopparapu, R., Raymond, S. N., Greenberg, R., & Gorelick, N. (2013). SECULAR BEHAVIOR OF EXOPLANETS: SELF-CONSISTENCY AND COMPARISONS WITH THE PLANET-PLANET SCATTERING HYPOTHESIS. The Astronomical Journal, 146(3), 63. doi:10.1088/0004-6256/146/3/63
-
Wong, M. H., Atreya, S. K., Mahaffy, P. N., Franz, H. B., Malespin, C., Trainer, M. G., … Steele, A. (2013). Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity’s mass spectrometer. Geophysical Research Letters, 40(23), 6033–6037. doi:10.1002/2013gl057840
-
Zahnle, K. J., Catling, D. C., & Claire, M. W. (2013). The rise of oxygen and the hydrogen hourglass. Chemical Geology, 362, 26–34. doi:10.1016/j.chemgeo.2013.08.004
- Catling, D. Astrobiology : a very short introduction. Very short introductions.
- Catling, D.C. (2014). 6.7 – The Great Oxidation Event Transition. In: Holland, H.D. & Turekian, K.K. (Eds.). Treatise on Geochemistry (Second Edition). Oxford: Elsevier.
- Kasting, J.F. (2014). 6.6 – Modeling the Archean Atmosphere and Climate. In: Holland, H.D. & Turekian, K.K. (Eds.). Treatise on Geochemistry (Second Edition). Oxford: Elsevier.