Notice: This is an archived and unmaintained page. For current information, please browse astrobiology.nasa.gov.

Icy Origins: Snowlines During Star and Planet Formation

Presenter: Karin Öberg, Harvard University
When: November 1, 2013 12PM PDT

In the cold and dense stages of star and planet formation, volatile molecules condense out on interstellar grains forming icy mantles. This condensation process results in a series of snowlines, or condensation fronts, whose exact locations are set by a combination of thermal and non-thermal adsorption and desorption processes. The icy grain mantles are also active chemical sites, resulting in a changing ice composition with time, typically to include an increasing fraction of complex organic molecules. The nature of these snowlines in protoplanetary disks are predicted to have large impacts on planet formation efficiencies, on the bulk compositions of the forming planets, and on the amount of prebiotic material available on planet surfaces. We have used a combination of IR and millimeter observations, theory, and laboratory experiments to characterize interstellar ices, snow line locations (i.e. where these ices are located), and the chemical and planet formation consequences of the exact locations of different snow lines. I will discuss how the outcome of these studies have impacted our understanding of ice formation during star and planet formation, and also future prospects as complete ALMA and the next generation of laboratory experiments come online.

Space Telescope Science Institute Webcast Series

  • Johns Hopkins University and the Space Telescope Science Institute present live and on-demand webcasts related to science, technology, and business to the scientific community and the public at-large. Live webcasts, production services, and the webcast archive are managed by the Information Technology Services division of the Space Telescope Science Institute.
  • Subscribe to this series