The origin of life occurred in a complex geochemical environment, characterized by significant chemical and thermal gradients, fluid fluxes, cycles, and interfaces. These aspects of the prebiotic world are critical to understanding life’s origins. Crystalline surfaces of common rock-forming minerals are likely to have played several important roles, including catalysis of key biomolecules; as interfaces for the selection, concentration and protection of those molecules; and as templates for the assembly of molecular structures. Thus mineral surfaces may have contributed centrally to the linked prebiotic problems of containment and organization by promoting the transition from a dilute “primordial soup” to highly order domains of molecules.
Robert M. Hazen, Senior Staff Scientist at the Carnegie Institution’s Geophysical Laboratory and Clarence Robinson Professor of Earth Sciences at George Mason University, received the B.S. and S.M. in geology at MIT and the Ph.D. at Harvard University in earth science. He is author of 350 scientific articles and 20 books, including Genesis: The Scientific Quest for Life’s Origin. A former President of the Mineralogical Society of America, Hazen’s recent research focuses on the role of minerals in the origin of life, the co-evolution of the geo- and biospheres, and the development of complex systems. He is also Principal Investigator of the Deep Carbon Observatory, a 10-year project to study the chemical and biological roles of carbon in Earth’s interior (http://dco.ciw.edu).