-
How Tidally-Locked Planets Could Avoid a ‘Snowball Earth’ Fate
April 26, 2018 / Written by: Charles Q. Choi
An artist’s impression of a "Snowball Earth". Image credit: NASA.Excerpted from the story by Charles Q. Choi:
Tidally-locked planets in the habitable zone of stars may be able to avoid global ice ages, according to a study that models the interplay of where ice forms and how it reflects sunlight. Meanwhile, a second study has found that planets that are strongly tilted are more likely to experience sudden ice ages.
The “habitable zone” around stars, where it’s warm enough for liquid water to exist on an Earth-like world’s surface, has long been the gold standard in assessing the potential for life on other worlds, but as our understanding of astrobiology deepens, scientists are looking for other clues to habitability.
Read more at Astrobiology Magazine.
Source: [Astrobiology Magazine (astrobio.net)]
- The NASA Astrobiology Institute Concludes Its 20-year Tenure
- Global Geomorphologic Map of Titan
- Molecular Cousins Discovered on Titan
- Interdisciplinary Consortia for Astrobiology Research (ICAR)
- The NASA Astrobiology Science Forum Talks Now on YouTube
- The NASA Astrobiology Science Forum: The Origin, Evolution, Distribution and Future of Astrobiology
- Alternative Earths
- Drilling for Rock-Powered Life
- Imagining a Living Universe
- Workshops Without Walls: Astrovirology