VIRAL INFECTION MODES AND INVASION FITNESS ACROSS A CONTINUUM FROM LYSIS TO LATENCY

Dr. Joshua S.Weitz
Professor, School of Biological Sciences
Courtesy Professor, School of Physics \& ECE \&

Founding Director, Ph.D. in Quantitative Biosciences Georgia Institute of Technology
http://ecotheory.biology.gatech.edu jsweitz@gatech.edu

What We Talk About When We Talk About Viruses

Ebola Virus

Image source: CDC

John Moore, Getty Images
(Nature, 2014)

Zika virus core
Sirohi et al. Science, 2016

Source: CNN

Influenza virus virology.ws

Source: CDC

But viruses infect organisms across the diversity of life

```
    Humans }\longleftrightarrow HIV, Ebolazaire, Rhinovirus,..
Mammals }\longleftrightarrow\mathrm{ Lentivirus,...
    Birds }\longleftrightarrow\mathrm{ Avian influenza,...
    Insects }\longleftrightarrow\mathrm{ Baculovirus, ...
    Plants }\longleftrightarrow\mathrm{ Tobacco mosaic virus,...
```


But viruses infect organisms across the diversity of life, including microbes

Humans \longleftrightarrow HIV, Ebolazaire, Rhinovirus,...
Mammals
\longleftrightarrow Lentivirus, ...
Birds \longleftrightarrow Avian influenza, ...
Insects \longleftrightarrow Baculovirus, ...
Plants \longleftrightarrow Tobacco mosaic virus, ...
Amoeba \longleftrightarrow Giant mimiviruses
Archaea \longleftrightarrow Sulfulobus spindle viruses
Bacteria \longleftrightarrow Bacteriophages (lambda,T4, ...)

SSV - Quemin et al. J. Vir. 2015

T4-mbio.ncsu.edu

The life of a bacterial virus (phage)

$$
\begin{aligned}
& \text { mancos.amememem } \\
& 0.0
\end{aligned}
$$

The life of a bacterial virus (phage)

A "predator-prey" model is the basis for studies of virus-microbe population dynamics

Dynamic model

$$
\text { [C] } \frac{d R}{d t}=\overbrace{\omega R_{0}}^{\text {media infow }}-\overbrace{f(R) N}^{\text {nutrient consumption }}-\overbrace{\omega R}^{\text {outfow }}
$$

Interactions:

Resource inflow/outflow Host growth and outflow Viral lysis and outflow
Result:"Lotka-Volterra" like predator-prey dynamics

Counter-clockwise cycles

Similar model proposed by Campbell (1961) Evolution 15: 153
\& adapted to phage-bacteria chemostats by Levin et al. (1977) Am. Nat. I I I:3

The same types of cycles can be observed in virus-host population dynamics (in the lab)

"Predator-prey" like cycles between phage T4 and E. coli B

Data: Bohannan \& Lenski, Ecology (1997)

Take-home message:

Original models of viral-host dynamics presuppose a "simple" one virus, one host relationship.

Further analysis of this and other cases in:
Weitz, Quantitative Viral Ecology: Dynamics of Viruses and Their Microbial Hosts, Princeton University Press, 2015.

The Problem of Scales in

 Quantitative Viral Ecology:
Linking Mechanism to Pattern

Longitude

Infection and lysis leads to oscillatory dynamics at the population scale...

Which scale-up to massive ecosystem effects when integrated over the global oceans.

Virus-host interactions modify the fate of cells on time scales similar to division times...

Quantitative
Viral Ecology
dynamics of viruses and THEIR MICROBIAL HOSTS

The Problem of Scales in

 Quantitative Viral Ecology:

But do viruses of microbes do more than kill or prepare to kill?

Lysogeny - 'Lessons from a Simple System’

Lysogeny - 'Lessons from a Simple System’

induction

1953 - Lwoff, A., Bacteriology Reviews

Lysogeny - 'Lessons from a Simple System'

Golding et al.Ann Rev. Biophys. 201 I
\&
Ptashe, A Genetic Switch: Phage Lambda
Revisisted, 2004.

Why Be Temperate? A 40+ year-old question

The Population Biology of Bacterial Viruses: Why Be Temperate

Frank M. Stewart and Bruce R. Levin

Department of Mathematics, Brown University, Providence, Rhode Island 02912, and Department of Zoology, University of Massachusetts, Amherst, Massachusetts 01003

Received May 23, 1983

$$
\begin{aligned}
\dot{r} & =\rho(C-r)-e \psi(r)\left(L+\left(1-\alpha_{\mathrm{S}}\right) S\right. \\
\dot{L} & =\psi(r) L+\lambda \delta_{\mathrm{T}} S T-(\rho+\xi+\tau) L, \\
\dot{S} & =\left(1-\alpha_{\mathrm{S}}\right) \psi(r) S-\delta_{\mathrm{T}} S T+\tau L-\rho S, \\
\dot{T} & =\xi \beta_{\mathrm{T}} L+\beta_{\mathrm{T}}(1-\lambda) \delta_{\mathrm{T}} S T-\delta_{\mathrm{T}} L T-\rho T .
\end{aligned}
$$

Feast or Famine Hypothesis

Premise: temperate phage do better when few hosts are available and extracellular mortality rate are high.

Caveat: "In spite of the intuitive appeal of this low density hypothesis, we are unable to obtain solutions consistent with it using the model presented here."

Lysogeny and Plankton Blooms: An Inverse Relationship with Plankton Density

'Seasonal Timebombs':
Lysogeny prevalent given low productivity and lysis elevated at high productivity

Brum et al. ISME J. 2015 \&
McDaniel et al. Nature 2002

An Alternative Hypothesis: "Piggyback-the-Winner"

Piggyback-the-winner - lysogeny is positively correlated with increases in host density and productivity.

Knowles et al. Nature 2016

Piggyback-the-Winner:
 Re-examining the metagenomics evidence

Piggyback-the-winner - lysogeny is positively correlated with increases in host density and productivity.

Knowles et al. Nature 2016

Piggyback-the-Winner:
 Re-examining the metagenomics evidence

Piggyback-the-winner - lysogeny is positively correlated with increases in host density and productivity.

Knowles et al. Nature 2016

What environmental conditions should favor lysogeny rather than lysis?

What environmental conditions should favor lysogeny rather than lysis?

On old lesson:
A bird in the hand is worth two in the bush.

What environmental conditions should favor lysogeny rather than lysis?

On old lesson:
A bird in the hand is worth two in the bush.

A new puzzle:
A virus in the cell is worth \mathbf{N} in the bloom.

What environmental conditions should favor lysogeny rather than lysis?

On old lesson:
A bird in the hand is worth two in the bush.

A new puzzle:
A virus in the cell is worth \mathbf{N} in the bloom.

But, what is N ?

Viral proliferation at the individual level for lytic strategies

Viral proliferation at the individual level for lytic strategies and latent strategies

Obligately lytic viruses

Viral proliferation at the individual level for lytic strategies and latent strategies

Obligately lytic viruses

Two vastly different strategies can lead to the same 'fitness' at the individual level.

How does this depend on cell densities?

Population dynamics of lytic viruses

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} t}=\overbrace{b S(1-N / K)}^{\text {logistic growth }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{d S}^{\text {cell death }} \\
& \frac{\mathrm{d} I}{\mathrm{~d} t}=\overbrace{\phi S V}^{\text {infection }}-\overbrace{\eta I}^{\text {lysis }}-\overbrace{d^{\prime} I}^{\text {cell death }} \\
& \frac{\mathrm{d} V}{\mathrm{~d} t}=\overbrace{\beta \eta I}^{\text {lysis }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{m V}^{\text {viral decay }}
\end{aligned}
$$

Population dynamics of lytic viruses

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} t}=\overbrace{b S(1-N / K)}^{\text {logistic growth }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{d S}^{\text {cell death }} \\
& \frac{\mathrm{d} I}{\mathrm{~d} t}=\overbrace{\phi S V}^{\text {infection }}-\overbrace{\eta I}^{\text {lysis }}-\overbrace{d^{\prime} I}^{\text {cell deat }} \\
& \frac{\mathrm{d} V}{\mathrm{~d} t}=\overbrace{\beta \eta I}^{\text {lysis }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{m V}^{\text {viral decay }}
\end{aligned}
$$

Viruses increase in population, within infected cells given exclusively horizontal transmission when

$$
\mathcal{R}_{h o r}=\beta\left(\frac{\phi S^{*}}{\phi S^{*}+m}\right)\left(\frac{\eta}{\eta+d^{\prime}}\right)
$$

is greater than I

Population dynamics of lytic viruses

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} t}=\overbrace{b S(1-N / K)}^{\text {logistic growth }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{d S}^{\text {cell death }} \\
& \frac{\mathrm{d} I}{\mathrm{~d} t}=\overbrace{\phi S V}^{\text {infection }}-\overbrace{\eta I}^{\text {lysis }}-\overbrace{d^{\prime} I}^{\text {cell deat }} \\
& \frac{\mathrm{d} V}{\mathrm{~d} t}=\overbrace{\beta \eta I}^{\text {lysis }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{m V}^{\text {viral decay }}
\end{aligned}
$$

Viruses increase in population, within infected cells given exclusively horizontal transmission when
$\mathcal{R}_{\text {hor }}=$ size $_{\text {Burst }}\left(\begin{array}{c}\text { Probability of } \\ \text { viral adsorption } \\ \text { to host } \\ \text { before decay }\end{array}\right)\left(\begin{array}{c}\text { Probability } \\ \text { of lysis } \\ \text { before } \\ \text { washout }\end{array}\right)$
is greater than I

Population dynamics of lytic viruses

$$
\frac{\mathrm{d} S}{\mathrm{~d} t}=\overbrace{b S(1-N / K)}^{\text {logistic growth }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{d S}^{\text {infection }}=\overbrace{\phi S V}^{\text {dell death }}
$$

Population dynamics of lytic viruses

Population dynamics of latent viruses

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} t}=\overbrace{b S(1-N / K)}^{\text {logistic growth }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{d S}^{\text {cell death }} \\
& \frac{\mathrm{d} L}{\mathrm{~d} t}=\overbrace{q b^{\prime} L(1-N / K)}^{\text {lysogen growth }}+\overbrace{\phi S V}^{\text {infection }}-\overbrace{p \eta L}^{\text {lysis }}-\overbrace{d^{\prime} L}^{\text {cell death }} \\
& \frac{\mathrm{d} V}{\mathrm{~d} t}=\overbrace{\beta p \eta L}^{\text {lysis }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{m V}^{\text {viral decay }}
\end{aligned}
$$

Population dynamics of latent viruses

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} t}=\overbrace{b S(1-N / K)}^{\text {logistic growth }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{d S}^{\text {cell death }} \\
& \frac{\mathrm{d} L}{\mathrm{~d} t}=\overbrace{q b^{\prime} L(1-N / K)}^{\text {lysogen growth }}+\overbrace{\phi S V}^{\text {infection }}-\overbrace{p \eta L}^{\text {lysis }}-\overbrace{d^{\prime} L}^{\text {lysis }} \overbrace{\overbrace{\text { inf death }}^{\text {infection }}}^{\mathrm{d} t}=\overbrace{\beta p \eta L}^{\text {viral decay }}-\overbrace{\phi S V}-\overbrace{m V}^{\mathrm{d} V}
\end{aligned}
$$

Viruses increase in population, within infected cells given exclusively vertical transmission when

$$
\mathcal{R}_{v e r}=\frac{b^{\prime}\left(1-\frac{S^{*}}{K}\right)}{d^{\prime}}
$$

is greater than I

Population dynamics of latent viruses

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} t}=\overbrace{b S(1-N / K)}^{\text {logistic growth }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{d S}^{\text {cell death }} \\
& \frac{\mathrm{d} L}{\mathrm{~d} t}=\overbrace{q b^{\prime} L(1-N / K)}^{\text {lysogen growth }}+\overbrace{\phi S V}^{\text {infection }}-\overbrace{p \eta L}^{\text {lysis }}-\overbrace{d^{\prime} L}^{\text {lysis }} \overbrace{\overbrace{\text { in ll death }}^{\text {infection }}}^{\mathrm{d} t}=\overbrace{\beta p \eta L}^{\text {viral decay }}-\overbrace{\phi S V}-\overbrace{m V}^{\mathrm{d} V}
\end{aligned}
$$

Viruses increase in population, within infected cells given exclusively vertical transmission when

$\mathcal{R}_{v e r}=$ Division rate \times Cell lifespan
is greater than I

Population dynamics of latent viruses

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} t}=\overbrace{b S(1-N / K)}^{\text {logistic growth }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{d S}^{\text {cell death }} \\
& \frac{\mathrm{d} L}{\mathrm{~d} t}=\overbrace{q b^{\prime} L(1-N / K)}^{\text {lysogen growth }}+\overbrace{\phi S V}^{\text {infection }}-\overbrace{p \eta L}^{\text {lysis }}-\overbrace{d^{\prime} L}^{\text {cell death }} \\
& \frac{\mathrm{d} V}{\mathrm{~d} t}=\overbrace{\beta p \eta L}^{\text {lysis }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{m V}^{\text {viral decay }}
\end{aligned}
$$

Population dynamics of latent viruses

Take-away

Ecological conditions with reduced niche competition, direct cell benefits, or low virion survivorship favor latent strategies.

Population dynamics of chronic viruses

$$
\begin{aligned}
\frac{\mathrm{d} S}{\mathrm{~d} t} & =\overbrace{b S(1-N / K)}^{\text {logistic growth }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{d S}^{\text {cell death }} \\
\frac{\mathrm{d} I}{\mathrm{~d} t} & =\overbrace{b^{\prime} I(1-N / K)}^{\text {logistic growth }}+\overbrace{\phi S V}^{\text {infection }}-\overbrace{d^{\prime} I}^{\text {cell death }} \\
\frac{\mathrm{d} V}{\mathrm{~d} t} & =\overbrace{\alpha I}^{\text {virion production }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{m V}^{\text {viral decay }}
\end{aligned}
$$

Population dynamics of chronic viruses

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} t}=\overbrace{b S(1-N / K)}^{\text {logistic growth }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{d S}^{\text {cell death }} \\
& \frac{\mathrm{d} I}{\mathrm{~d} t}=\overbrace{b^{\prime} I(1-N / K)}^{\text {logistic growth }}+\overbrace{\phi S V}^{\text {virion production }}-\overbrace{\overbrace{\alpha I}}^{\text {infection }}-\overbrace{d_{d S V}^{\prime}}^{\text {cell death }} \\
& \frac{\mathrm{d} V}{\text { infection }}-\overbrace{m V}^{\text {viral decay }}
\end{aligned}
$$

Viruses increase in population, within infected cells given mixed transmission when
$\mathcal{R}_{\text {chron }} \equiv \overbrace{\frac{\alpha}{d^{\prime}}\left(\frac{\phi S^{*}}{\phi S^{*}+m}\right)}^{\text {horizontal }}+\overbrace{\frac{b^{\prime}\left(1-S^{*} / K\right)}{d^{\prime}}}^{\text {vertical }}$
is greater than I

Population dynamics of chronic viruses

$$
\begin{aligned}
& \frac{\mathrm{d} S}{\mathrm{~d} t}=\overbrace{b S(1-N / K)}^{\text {logistic growth }}-\overbrace{\phi S V}^{\text {infection }}-\overbrace{d S}^{\text {cell death }} \\
& \frac{\mathrm{d} I}{\mathrm{~d} t}=\overbrace{b^{\prime} I(1-N / K)}^{\text {logistic growth }}+\overbrace{\phi S V}^{\text {infection }}-\overbrace{d^{\prime} I}^{\text {cell death }} \\
& \text { virion production infection viral decay } \\
& \frac{\mathrm{d} V}{\mathrm{~d} t}=\overbrace{\alpha I}-\overbrace{\phi S V}-\overbrace{m V} \\
& \text { (} \\
& \begin{array}{l}
\text { Weitz et al."Viral fitness across a continuum } \\
\text { from lysis to latency".Virus Evolution, 2019 }
\end{array}
\end{aligned}
$$

Population dynamics of chronic viruses

What environmental conditions should favor lysogeny rather than lysis?

Answering this question requires a unified metric, e.g.,:
\mathcal{R}_{0} : the average number of new infected cells produced by a single (typical) infected cell and its progeny virions in an otherwise susceptible population.

Take-away

Loop-based approach decomposes viral fitness into lytic, lysogenic, and lyso-lytic loops, transcends model details \& reveals generic mechanisms for the benefits of latency.

Li, Cortez \& Weitz, biorxiv: 709758

Q: What is a Virus?

A)

Virion
B)

Lysogen

Lytically infected cell

D: All of the above.

Viral fitness in the environment depends on measuring the present and long-term value of infection across the entire viral life cycle, whether inside or outside hosts.

A new challenge for theory, experiments, and field-work.

Acknowledgements

GT: Chad Wigington, Stephen
Beckett, Guanlin Li, Hend
Alrasheed, Rong Jin
Florida State: Michael Cortez
MSU: Mark Young
UIUC: Rachel Whitaker
UL-Lafayette: Hayriye Gulbudak
Thank you!

More details:

Re-examination of the relationship between marine virus and microbial cell abundances. Wigington et al., Nat. Micro 2016
Lysis, lysogeny, and virus-microbe ratios,Weitz et al. Nature 2017
Heterogeneous viral strategies promote coexistence in virus-microbe systems, Gulbudak \& Weitz, J. Theor. Biol. 2019;
Alrasheed, Jin, \& Weitz, Caution in inferring viral strategies from abundance correlations in marine metagenomes. Nat. Comm, 2019
Viral invasion fitness across a continuum from lysis to latency, Weitz, Li, Gulbudak, Cortez, and Whitaker.,Virus Evolution 2019
Why be temperate: a synthesis, Li, Cortez \& Weitz, biorxiv \& in review https://doi.org/I0.1101/709758

Quantitative Viral Ecology
dynamics of viruses and their microbial hosts

Joshua S. Weitz
| \mathfrak{T} princeton university press

Follow us:

http://ecotheory.biology.gatech.edu (web)
@joshuasweitz \& @weitz_group (twitter)
weitzgroup.github.io (code, data, and information)
biorxiv.org \& arxiv.org (preprints)

