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State of the art
Thermal tides are particularly important for terres-
trial planets in the habitable zone where they drive
the tidal response of the atmosphere [1]. They play
a key role for the equilibrium states of the spin, as in
the case of Venus [2] and of exoplanets [e.g. the nu-
merical simulations by 3]. We present here a new an-
alytic approach that generalizes the reference work
of Chapman and Lindzen [4] by taking into account
radiative processes. The tidal response of the at-
mosphere, Love numbers and tidal torque are com-
puted explicitly as functions of the tidal frequency
and physical parameters, and agree well with results
obtained by direct numerical simulations using Gen-
eral Circulation Models (GCM).

Definitions and parameters
System: the atmosphere of an Earth-like planet
rotating at the spin frequency Ω, and submitted to a
periodical tidal forcing of frequency σ.

Spherical coordinates: radius (r), colatitude (θ),
longitude (ϕ), latitude (δ).

Physical ingredients:
• Restoring forces - Coriolis & stratification;
• Dissipative mechanisms - Newtonian cooling.

Forcings:
• tidal gravitational potential U ,
• thermal insolation power J .

Tidal response:
• variations of pressure (δp), density (δρ), tem-

perature (δT ), velocity field (Vr, Vθ, Vϕ),
• tidal torque T .

Contributions:
• “Horizontal part” - direct forcing,
• “Vertical part” - related to vertical displace-

ment.
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Figure 1: Tidal elongation of a rotating planet composed
of a solid core (green) and a gaseous atmosphere (blue),
and submitted to gravitational and thermal forcings.
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Tidal response of a stably stratified atmosphere
• application of the model to the Solar semidiurnal thermal tide of a Venus-like planet,
• stably stratified isothermal atmosphere in solid rotation with the solid part,
• quadrupolar perturbation = P 2

2 (cos θ) ei(σt+2ϕ) with academic constant radial profiles,
• tidal frequency given by σ = 2 (Ω− ñ), with ñ the mean motion of the planet.

PRESSURE

DENSITY

TEMPERATURE

VELOCITY

Figure 2: Tidal response of the stably stratified isothermal atmosphere of a Venus-like planet to a quadrupolar thermal
forcing. Left - Logarithmic amplitudes of pressure (δp) and density (δρ) variations as functions of the reduced latitude
δ/π and altitude x = z/H (where H is the pressure height scale) in logarithmic scale. Right - Real parts of the same
quantities expressed at the ground as functions of the reduced longitude ϕ/π and latitude δ/π.

Tidal torque as a function of the tidal frequency
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Figure 3: Top - Frequency spectrum of the atmospheric
tidal response, where N , σ0 and σs;n are the Brunt-Väisälä
frequency, the radiative frequency and the acoustic fre-
quency respectively. Bottom - Atmospheric tidal torque in-
duced by Venus’ semidiurnal tide as a function of the re-
duced tidal frequency χ = σ/ (2ñ) in the case where the
atmosphere is considered to be isothermal and stably-
stratified. The notations T , H and V designate the total
torque and its two contributions, the “Horizontal part” and
the “Vertical part”, respectively. The pink curve (CL01)
represents the equivalent torque defined by the empirical
model of [2].

Key points:
• atmospheric tidal torque = function of the tidal

frequency,
• stable stratification⇒weak torque,
• convection⇒ strong torque [in agreement with

2, 3],

Consequences on the planet’s spin
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Figure 4: Rotation states of equilibrium of a Venus-like
planet as a function of the tidal frequency ω and star-planet
distance a in logarithmic scale. Stable (unstable) positions
correspond to blue (red) lines. Prograde, retrograde and
synchronized states are designated by Ω+, Ω− and Ω0 re-
spectively. The purple region represents the habitable zone.

Key points:
• state of equilibrium = solid and atmospheric

torques balance,
• strong thermal tide⇒ non-synchronized states,
• weak thermal tide ⇒ spin-robit synchroniza-

tion,

Conclusions and prospects
We have set the bases of a new theoretical framework to study the atmospheric tides of Earth-like planets
and exoplanets analytically. It is complementary with numerical simulations. It can be used to explain the
qualitative behaviour of an atmosphere submitted to both thermal and gravitational perturbations and to
explore the domain of key physical parameters.


