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Abstract:	  The	  UK	  Met	  Office	  GCM	  applied	  to	  HD	  209458b	  
To	  study	  the	  complexity	  of	  hot	  Jupiter	  atmospheres	  revealed	  by	  observaWons	  of	   increasing	  quality,	  we	  have	  adapted	  
the	  UK	  Met	  Office	  Global	  Circula5on	  Model	  (GCM),	  the	  Unified	  Model	  (UM),	  to	  these	  exoplanets.	  The	  UM	  solves	  the	  
full	  3D	  Euler	  equa5ons	  with	  a	  height-‐varying	  gravity,	  avoiding	  the	  simplificaWons	  used	  in	  most	  GCMs	  currently	  applied	  
to	  exoplanets.	  We	  present	  the	  coupling	  of	  the	  UM	  dynamical	  core	  to	  an	  accurate	  radiaWon	  scheme	  based	  on	  the	  two-‐
stream	  approxima5on	  and	  correlated-‐k	  method	  with	  state-‐of-‐the-‐art	  opaci5es	  from	  ExoMol.	  Our	  first	  applicaWon	  of	  
this	  model	   is	   devoted	   to	   the	  extensively	   studied	  hot	   Jupiter	  HD	  209458b.	  We	  derive	   syntheWc	  emission	   spectra	   and	  
phase	   curves,	   and	   compare	   them	   to	   both	   previous	  models	   also	   based	   on	   state-‐of-‐the-‐art	   radiaWve	   transfer,	   and	   to	  
observaWons.	  We	  find	  a	  reasonable	  agreement	  between	  our	  day	  side	  emission,	  hotspot	  offset	  and	  observa5ons,	  while	  
our	  night	  side	  emission	   is	  too	   large.	  Overall	  our	  results	  are	  qualita5vely	  similar	  to	  those	  found	  by	  Showman	  et	  al.,	  
ApJ,	  2009	  with	  the	  SPARC/MITgcm,	  however,	  our	  simulaWons	  show	  significant	  variaWon	  in	  the	  posiWon	  of	  the	  hoYest	  
part	   of	   the	   atmosphere	  with	   pressure,	   as	   expected	   from	   simple	  Wmescale	   arguments,	   in	   contrast	   to	   previous	  works	  
demonstraWng	  “verWcal	  coherency”	   (Showman	  et	  al.,	  ApJ,	  2009).	  Our	  comparisons	  strengthen	  the	  need	   for	  detailed	  
intercomparisons	   of	   dynamical	   cores,	   radiaWon	   schemes	   and	   post-‐processing	   tools	   to	   understand	   these	   differences.	  
This	  effort	  is	  necessary	  in	  order	  to	  make	  robust	  conclusions	  about	  these	  atmospheres	  based	  on	  GCM	  results.	  
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Abstract:	  Treatment	  of	  overlapping	  gaseous	  absorp5on	  with	  
the	  correlated-‐k	  method	  in	  atmosphere	  models	  

Comparison	  to	  observa5ons	  
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Dayside	  emission	  spectrum	  (len)	  and	  4.5	  μm	  phase	  curve	  (right)	  calculated	  from	  our	  3D	  GCM	  results	  using	  our	  1D	  
atmosphere	  code	  ATMO.	  We	  are	  able	  to	  match	  the	  dayside	  emission	  quite	  well,	  including	  the	  offset	  of	  the	  peak	  flux,	  
while	  our	  night	  side	  emission	  is	  too	  large.	  This	  is	  also	  the	  case	  for	  Showman	  et	  al.’s	  models	  from	  Zellem	  et	  al.	  (2014),	  
parWcularly	  for	  the	  model	  with	  	  a	  setup	  close	  to	  ours	  (no	  TiO/VO).	  

Horizontal	  temperature	  and	  wind	  fields	  

Wind	  as	  arrows	  and	  temperature	  as	  colours	  	  [K]	  from	  our	  simulaWon	  of	  HD	  209458b	  at	  102	  Pa	  (len)	  and	  105	  Pa	  (right)	  
aner	   1600	   Earth	   days.	   The	   flow	   is	   diverging	   from	   the	   substellar	   point,	   although	   with	   a	   pronounced	   eastward	  
equatorial	  jet.	  The	  hotspot	  is	  shined	  eastward	  of	  the	  substellar	  point	  as	  seen	  in	  other	  models	  (e.g.	  Showman	  et	  al.	  ApJ	  
2009)	  and	  suggested	  by	  Spitzer	  phase	  curve	  observaWons	  (see	  e.g.	  Zellem	  et	  al.	  ApJ	  2014).	  

We	  show	  on	  the	  right	  the	  zonal	  mean	  of	  the	  zonal	  wind	  [m/s]	  
as	   a	   funcWon	   of	   pressure	   and	   laWtude.	   The	   zonal	   jet	   in	   the	  
eastward	   direcWon	   menWoned	   above	   is	   clearly	   seen,	   and	   it	  
reaches	  its	  maximum	  strength	  at	  about	  103	  Pa	  with	  a	  velocity	  
of	  about	  7	  km/s.	  At	  higher	   laWtudes	   the	  mean	  flow	   is	   in	   the	  
opposite	   (westward)	   direcWon,	   and	   much	   weaker	   in	  
amplitude,	  with	  a	  maximum	  of	  about	  1.2	  km/s.	  

One	   characterisWc	   of	   the	   SPARC/MITgcm	   that	   is	   present	   in	  
both	  hot	  Jupiter	  models	  presented	  in	  Showman	  et	  al.	  (2009)	  is	  
what	   the	   authors	   term	   a	   “verWcal	   coherency”	   of	  
temperatures.	  This	  term	  is	  used	  to	  describe	  the	  fact	  that	  the	  
posiWon	   of	   the	   hoYest	   and	   coldest	   part	   of	   the	   atmosphere	  
vary	  only	  modestly	  between	  102	  Pa	  and	  105	  Pa.	  Even	  at	  105	  Pa	  
=	   1	   bar	   their	   models	   have	   temperature	   difference	   of	   about	  
500	   K	   between	   the	   hoYest	   and	   coldest	   points	   of	   the	  
atmosphere,	  with	  the	  hoYest	  point	  being	  offset	  significantly,	  
about	  80°	   longitude,	   from	   the	   substellar	  point.	   InteresWngly,	  
we	   do	   not	   see	   this	   verWcal	   coherence	   in	   our	   models.	   The	  
reason	   for	   this	   discrepancy	   is	   unclear,	   but	   we	   have	   run	   our	  
model	   significantly	   longer,	   giving	   the	   system	   Wme	   to	  
equilibrate	   at	   higher	   pressures,	   and	   we	   do	   not	   assume	   the	  
atmosphere	   to	   be	   shallow.	   This	   may	   help	   explain	   these	  
differences,	   but	   more	   in-‐depth	   comparisons	   are	   needed	   to	  
understand	  these	  differences	  in	  more	  detail.	  
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Conclusions	  
•  We	   obtain	   a	   good	   qualitaWve	   agreement	   with	  

Showman	   et	   al.	   (2009):	   both	   global	   circulaWon	  
paYerns	  and	  syntheWc	  observaWons	  are	  similar.	  

•  We	  do	  not	  see	  a	  “verWcal	  coherency”.	  

•  Further	  intercomparison	  is	  needed.	  
•  We	  obtain	  a	  reasonable	  fit	  to	  the	  dayside	  emission.	  
•  Like	  other	  models	  we	  overesWmate	  the	  night	  side	  flux.	  
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The	   correlated-‐k	   method	   is	   frequently	   used	   to	   speed	   up	   radiaWon	   calculaWons	   in	   both	   one-‐dimensional	   and	   three-‐
dimensional	  atmosphere	  models.	  An	   inherent	  difficulty	  with	  this	  method	   is	  how	  to	  treat	  overlapping	  absorp5on,	   i.e.	  
absorpWon	   by	   more	   than	   one	   gas	   in	   a	   given	   spectral	   region.	   We	   have	   evaluated	   the	   applicability	   of	   three	   different	  
methods	  in	  hot	  Jupiter	  and	  brown	  dwarf	  atmosphere	  models,	  all	  of	  which	  have	  been	  previously	  applied	  within	  models	  in	  
the	   literature:	   (i)	   Random	   overlap,	   both	   with	   and	   without	   resorWng	   and	   rebinning	   (Lacis	   &	   Oinas,	   JGR,	   1991),	   (ii)	  
equivalent	  ex5nc5on	  (Edwards,	  JAS,	  1996)	  and	  (iii)	  pre-‐mixing	  of	  opaci5es,	  where	  (i)	  and	  (ii)	  combine	  k-‐coefficients	  for	  
different	  gases	  to	  obtain	  k-‐coefficients	  for	  a	  mixture	  of	  gases,	  while	  (iii)	  calculates	  k-‐coefficients	  for	  a	  given	  mixture	  from	  
the	   corresponding	  mixed	   line-‐by-‐line	   opaciWes.	  We	   find	   that	   the	   random	   overlap	  method	   is	   the	  most	   accurate	   and	  
flexible	  of	  these	  treatments,	  and	  is	  fast	  enough	  to	  be	  used	  in	  one-‐dimensional	  models	  with	  resorWng	  and	  rebinning.	  In	  
three-‐dimensional	  models	  such	  as	  GCMs	  it	  is	  too	  slow,	  however,	  and	  equivalent	  ex5nc5on	  can	  provide	  a	  speed-‐up	  of	  at	  
least	   a	   factor	   of	   three	  with	   only	   a	  minor	   loss	   of	   accuracy	  while	   at	   the	   same	   Wme	   retaining	   the	   flexibility	   gained	   by	  
combining	  k-‐coefficients	  computed	  for	  each	  gas	   individually.	  Pre-‐mixed	  opaci5es	  are	  significantly	   less	  flexible,	  and	  we	  
also	  find	  that	  par5cular	  care	  must	  be	  taken	  when	  using	  this	  method	   in	  order	  to	  properly	  resolve	  rapid	  changes	   in	  the	  
total	   opacity	   caused	   by	   changing	  mixing	   raWos.	   Our	   k-‐tables	   have	   sufficient	   resoluWon	   to	   resolve	   opacity	   changes	   of	  
individual	  gases,	  but	  not	  to	  resolve	  rapid	  changes	  in	  gas	  mixing	  raWos	  caused	  by	  e.g.	  condensaWon.	  We	  use	  the	  random	  
overlap	  method	  with	  resorWng	  and	  rebinning	  in	  our	  one-‐dimensional	  atmosphere	  model	  and	  equivalent	  exWncWon	  in	  our	  
GCM,	   which	   allows	   us	   to	   e.g.	   consistently	   treat	   the	   feedback	   of	   non-‐equilibrium	   mixing	   raWos	   on	   the	   opacity	   and	  
therefore	  the	  calculated	  P-‐T	  profiles	  in	  our	  models.	  
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alent grey absorption” for all minor absorbers and all k-
coe�cients for the major absorber in each band.

Pre-mixed k-coe�cients have been employed in solar sys-
tem planet, exoplanet and brown dwarf atmosphere models (see
e.g. Burrows et al. 1997; Marley & Robinson 2014; Showman
et al. 2009; Wordsworth et al. 2013). This method avoids prob-
lems related to combining k-coe�cients for di↵erent gases, but
is inflexible as mixing must be assumed before k-coe�cients are
computed. Alternatively, gas mixing ratios can be added as di-
mensions to the look-up table of k-coe�cients, however, this
leads to a very large number of dimensions in the table. The
random overlap method has been applied in retrieval models (Ir-
win et al. 2008) and 1D brown dwarf atmosphere models (Trem-
blin et al. 2015, 2016), and assumes that the absorption cross-
sections of di↵erent gases are uncorrelated. The total number
of k-coe�cients in a band scales as the product of the number
of k-coe�cients for each overlapping gas, causing this method
to become computationally expensive, but resorting and rebin-
ning the resulting k-coe�cients can be used to circumvent this
issue (Lacis & Oinas 1991). We have recently applied equivalent
extinction in our GCM to study hot Jupiters (Amundsen et al.
2016, submitted). Like the random overlap method this method
is more flexible than using pre-mixed k-coe�cients, but requires
knowledge of which absorbers should be treated as the major
and minor sources of opacity in each band.

In this paper we compare these schemes in terms of computa-
tional e�ciency and evaluate their accuracy by comparing to re-
sults from line-by-line calculations. In Section 2 we give a brief
overview of the correlated-k method and Section 3 describes the
above overlap schemes in more detail. In Section 4 we apply
them in hot Jupiter atmosphere models, compare them and eval-
uate their computational e�ciency, by using our 1D radiative-
convective equilibrium atmosphere code ATMO (Tremblin et al.
2015, 2016) and our GCM radiation scheme SOCRATES1 (Ed-
wards & Slingo 1996; Edwards 1996; Amundsen et al. 2014).
We give our concluding remarks in Section 5.

2. The correlated-k method

As treating the wavelength-dependence of gaseous absorption
explicitly is too computationally expensive to be performed in
many atmosphere models, the correlated-k method is frequently
used. It considers the probability distribution of the opacity in the
spectral bands and assumes that the mapping between spectral
regions and the probability distribution is vertically correlated.
Originally developed for the Earth atmosphere (Lacis & Oinas
1991), it has since been adopted in both one-dimensional (Mar-
ley et al. 1996; Burrows et al. 1997; Marley & Robinson 2014;
Tremblin et al. 2015) and global circulation models (Showman
et al. 2009; Kataria et al. 2013; Amundsen et al. 2016, submit-
ted) of hot Jupiter and brown dwarf atmospheres. We do not dis-
cuss the correlated-k method in detail here, but refer to e.g. Lacis
& Oinas (1991), Goody et al. (1989) and Thomas & Stamnes
(2002) for in-depth discussions. Note that we have previously
verified the applicability of the correlated-k method in hot Jupiter
and brown dwarf atmosphere models (Amundsen et al. 2014).

In the correlated-k method the opacity spectrum is divided
into bands b. In each band k-coe�cients k

b

l

and corresponding
weights w

b

l

are computed from the probability distribution of the
opacity, with l 2 [1, nb

k

] where n

b

k

is the number of k coe�cients

1 https://code.metoffice.gov.uk/trac/socrates

within band b. The transmission through a homogeneous slab is
given by

T (u) =
Z ⌫̃2

⌫̃1

d⌫̃w(⌫̃)e�k(⌫̃)u =

Z 1

0
dg e

�k(g)u (1)

⇡
n

b

kX

l=1

w

b

l

e

�k

b

l

u, (2)

where ⌫̃ is the wavenumber, ⌫̃1 and ⌫̃2 are wavenumber limits of
band b, w(⌫̃) is a weighting function, and k(⌫̃) and u are the opac-
ity and column density of the gas, respectively. g(k) is the cumu-
lative opacity probability distribution, where g(k) is the proba-
bility of having an opacity  k within the band.

Pseudo-monochromatic fluxes F

b

l

are computed for each k

b

l

-
coe�cient, with the integrated flux in band b given by

F

b =

n

b

kX

l=1

w

b

l

F

b

l

, (3)

and the total spectral integrated flux given by

F =

n

bX

b=1

F

b, (4)

where n

b

is the number of bands.
The k

b

l

-coe�cients are the k-coe�cients for the gas mixture,
i.e. taking into account all absorbers present. Spectral bands can
be chosen such that absorption is dominated by only one gas, the
major absorber, in each band. Other gases may still contribute
significantly to absorption, however, which causes the need to
treat overlapping absorption. In addition, in some spectral re-
gions the major and minor absorbers may change depending on
the gas mixing ratios. Consequently, there is a need to compute
k-coe�cients for a gas mixture.

3. Treatments of gaseous overlap

In this section we briefly discuss three di↵erent methods for
treating overlapping gaseous absorption previously used in hot
Jupiter and brown dwarf atmosphere models in the literature.

3.1. Pre-mixed

The total absorption coe�cient can be calculated by summing
line-by-line absorption coe�cients for all absorbing species
weighted by their relative abundances:

k

tot(⌫̃, P,T ) =
NsX

i=1

k

i

(⌫̃, P,T )⇣
i

(P,T ), (5)

where the sum is over all Ns species, and k

i

(⌫̃, P,T ) and ⇣
i

(P,T )
are the absorption coe�cient and mixing ratio of gas i at pres-
sure P and temperature T , respectively. The total absorption co-
e�cient at a given (P,T ) is then given by k

tot⇢, where ⇢ is the
total gas density. k

tot can be used to compute and tabulate k-
coe�cients for the gas mixture as a function of temperature and
pressure. This approach has several advantages: it is fast, re-
quiring only one set of k-coe�cients for each temperature and
pressure, and it is simple to implement. This technique has been
used in 1D atmosphere models (e.g. Marley & Robinson 2014)
and the SPARC/MITgcm (Showman et al. 2009). It is not par-
ticularly flexible, however, as the local mixing ratios ⇣

i

(P,T )
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i.  Random	  overlap	  (Lacis	  &	  Oinas,	  JGR,	  1991):	  k-‐coefficients	  are	  computed	  for	  each	  gas	  and	  combined	  assuming	  
their	  absorpWon	  cross-‐secWons	  are	  uncorrelated:	  
	  
	  
	  
	  
Mixed	  k-‐coefficients	  can	  either	  be	  used	  as	  is	  (RO)	  or	  resorted	  and	  rebinned	  (RORR)	  into	  a	  smaller	  number	  of	  k-‐
coefficients.	  

ii.  Equivalent	   exWncWon	   (EE,	   AEE,	   Edwards,	   JAS,	   1996):	   k-‐coefficients	   are	   computed	   for	   each	   gas	   and	   combined	  
using	  an	  “equivalent	  grey	  absorpWon”	   for	  all	  minor	  absorbers	  and	  all	  k-‐coefficients	   for	   the	  major	  absorber	   in	  
each	  band:	  
	  
	  
	  

iii.  Pre-‐mixed	  opaciWes	  (PM,	  Goody	  et	  al.,	  JGR,	  1991):	  k-‐coefficients	  for	  the	  mixture	  are	  computed	  directly	  from	  the	  
total	  line-‐by-‐line	  gas	  opacity:	  
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must be determined before the time consuming calculation of
k-coe�cients. A potential solution would be to add gas mixing
ratios as dimensions to the look-up table of k-coe�cients, but
the increased size of such a table is prohibitive for application in
atmosphere models with many absorbing gases.

3.2. The random overlap method

The second method we discuss is the random overlap
method (Lacis & Oinas 1991). Assuming that the absorption co-
e�cient of one gas x, is uncorrelated to that of a second gas y, i.e.
that their lines are randomly overlapping, the total transmission
of the gas mixture over some column density (u

x

, u
y

) is given by
a simple scalar product,
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x

, u
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) = T (u
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) ⇥ T (u
y

). (6)

The assumption of uncorrelation between the absorption coe�-
cients of di↵erent gases will depend on the adopted bands and
its applicability should be verified by comparing to line-by-line
calculations. We perform such a comparison in Section 4.1.

3.2.1. Without resorting and rebinning

Equation (6) can be rewritten in terms of the k-coe�cients for
the individual gases x and y. The transmission through one layer
is, using Eqs. (1), (2) and (6),
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and
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xy,lm = w

x,lwy,m. (12)

Running n

k,xn

k,y pseudo-monochromatic calculations using these
k-coe�cients, the total flux can be calculated as usual using
Eqs. (3) and (4). This procedure can be replicated for an arbitrary
number of gases, however, the computation time increases by a
factor of n

k

for each gas added. This method therefore quickly
becomes too computationally expensive for practical use.

3.2.2. With resorting and rebinning

Lacis & Oinas (1991) suggested that resorting the k

xy,lm-
coe�cients and rebinning them to obtain a smaller number of k-
coe�cients k

red
xy,l would circumvent the scaling issue. First the k-

coe�cients of two gases are combined using Eqs. (11) and (12).
These n

k,xn

k,y k-coe�cients are sorted in increasing order, with

the weights sorted using the same mapping. We have used quick-
sort, shellsort and heapsort, all available as standard library rou-
tines (e.g. Press et al. 2007), and found that quicksort is generally
the fastest. We adopt quicksort in the current work.

The sorted k

xy,lm-coe�cients are then binned down to
n

red
k

reduced k

red
xy,l-coe�cients. We determine the corresponding

weights w

red
xy,l, or bins, using a Gauss-Legendre quadrature in

SOCRATES, while we use uniform weights in ATMO, with an
arbitrary number of reduced k-coe�cients n

red
k

. The reduced co-
e�cients k

red
xy,l are found by computing a weighted average of all

k

xy,lm-terms belonging to each reduced bin w

red
xy,l, where w

xy,lm are
used as weights. If a k

xy,lm-term extends over more than a sin-
gle reduced bin, it is split over neighbouring bins such that the
weights sum up to exactly w

red
xy,l in each bin.

After this resorting and rebinning, the process is repeated,
adding one gas at a time, until all gases have been added. The
final reduced k-coe�cients are used to compute the fluxes and
heating rates for the atmosphere. This approach is consequently
much more flexible than pre-mixing gases as gas abundances can
be set at run-time.

3.3. Equivalent extinction

The last method of treating gaseous overlap that we consider
is equivalent extinction (Edwards 1996). It utilizes the fact that
in most bands there is a primary (major) absorber, and includes
additional absorbers through a grey “equivalent extinction”. In
each layer and band an equivalent extinction k̄ is calculated for
each minor gas, which for the thermal component is defined as

k̄

x

=

P
n

k,x

l=1 w

x,lkx,lFv,l
P

n

k,x

l=1 w

x,lFv,l
, (13)

where k

x,l are the k-coe�cients of the minor gas in the layer
with corresponding weights w

x,l, and Fv,l is the thermal flux
in the layer including only absorption by k-term l of the gas.
Pseudo-monochromatic calculations are performed for all n

k

k-
coe�cients of the major gas in each band, with all other ab-
sorbers included by using the equivalent grey absorption k̄

x

. This
e↵ectively reduces the number of pseudo-monochromatic calcu-
lations required to one per k-coe�cient per gas.

The direct component of the stellar flux is readily included
by calculating the transmission for each gas separately and then
taking the product since, assuming random overlap, direct trans-
missions are multiplicative (see Eq. (6)). For the di↵use stellar
beam, which will be non-zero if scattering is included, the equiv-
alent extinction is defined by
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Fs⇤,l is the direct flux at the lower boundary including only k-
term l of the gas. The use of Fs⇤,l means that equivalent extinc-
tion in the current formulation is less suited for use in hot Jupiter
atmosphere models as the direct stellar flux at the bottom bound-
ary may be zero. In this case we use the smallest k-coe�cient for
the minor gas as k̄

x

. In this work, however, as we only consider
Rayleigh scattering, the main stellar radiation is contained in the
direct beam, making this a minor issue.

3.3.1. Determining the major absorber

We consider two approaches for determining the major absorber
in each band:

Article number, page 3 of 8

Amundsen et al.: Treatment of overlapping absorption in hot Jupiter and brown dwarf atmosphere models

must be determined before the time consuming calculation of
k-coe�cients. A potential solution would be to add gas mixing
ratios as dimensions to the look-up table of k-coe�cients, but
the increased size of such a table is prohibitive for application in
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The second method we discuss is the random overlap
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Running n
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k,y pseudo-monochromatic calculations using these
k-coe�cients, the total flux can be calculated as usual using
Eqs. (3) and (4). This procedure can be replicated for an arbitrary
number of gases, however, the computation time increases by a
factor of n
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for each gas added. This method therefore quickly
becomes too computationally expensive for practical use.
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Lacis & Oinas (1991) suggested that resorting the k
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the weights sorted using the same mapping. We have used quick-
sort, shellsort and heapsort, all available as standard library rou-
tines (e.g. Press et al. 2007), and found that quicksort is generally
the fastest. We adopt quicksort in the current work.
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xy,lm-coe�cients are then binned down to
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weights w
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xy,l are found by computing a weighted average of all
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xy,lm-terms belonging to each reduced bin w
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xy,l, where w

xy,lm are
used as weights. If a k

xy,lm-term extends over more than a sin-
gle reduced bin, it is split over neighbouring bins such that the
weights sum up to exactly w

red
xy,l in each bin.

After this resorting and rebinning, the process is repeated,
adding one gas at a time, until all gases have been added. The
final reduced k-coe�cients are used to compute the fluxes and
heating rates for the atmosphere. This approach is consequently
much more flexible than pre-mixing gases as gas abundances can
be set at run-time.

3.3. Equivalent extinction

The last method of treating gaseous overlap that we consider
is equivalent extinction (Edwards 1996). It utilizes the fact that
in most bands there is a primary (major) absorber, and includes
additional absorbers through a grey “equivalent extinction”. In
each layer and band an equivalent extinction k̄ is calculated for
each minor gas, which for the thermal component is defined as
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where k

x,l are the k-coe�cients of the minor gas in the layer
with corresponding weights w

x,l, and Fv,l is the thermal flux
in the layer including only absorption by k-term l of the gas.
Pseudo-monochromatic calculations are performed for all n
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k-
coe�cients of the major gas in each band, with all other ab-
sorbers included by using the equivalent grey absorption k̄

x

. This
e↵ectively reduces the number of pseudo-monochromatic calcu-
lations required to one per k-coe�cient per gas.

The direct component of the stellar flux is readily included
by calculating the transmission for each gas separately and then
taking the product since, assuming random overlap, direct trans-
missions are multiplicative (see Eq. (6)). For the di↵use stellar
beam, which will be non-zero if scattering is included, the equiv-
alent extinction is defined by
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Fs⇤,l is the direct flux at the lower boundary including only k-
term l of the gas. The use of Fs⇤,l means that equivalent extinc-
tion in the current formulation is less suited for use in hot Jupiter
atmosphere models as the direct stellar flux at the bottom bound-
ary may be zero. In this case we use the smallest k-coe�cient for
the minor gas as k̄

x

. In this work, however, as we only consider
Rayleigh scattering, the main stellar radiation is contained in the
direct beam, making this a minor issue.

3.3.1. Determining the major absorber

We consider two approaches for determining the major absorber
in each band:
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k-coe�cients. A potential solution would be to add gas mixing
ratios as dimensions to the look-up table of k-coe�cients, but
the increased size of such a table is prohibitive for application in
atmosphere models with many absorbing gases.

3.2. The random overlap method

The second method we discuss is the random overlap
method (Lacis & Oinas 1991). Assuming that the absorption co-
e�cient of one gas x, is uncorrelated to that of a second gas y, i.e.
that their lines are randomly overlapping, the total transmission
of the gas mixture over some column density (u
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) is given by
a simple scalar product,
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The assumption of uncorrelation between the absorption coe�-
cients of di↵erent gases will depend on the adopted bands and
its applicability should be verified by comparing to line-by-line
calculations. We perform such a comparison in Section 4.1.
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Equation (6) can be rewritten in terms of the k-coe�cients for
the individual gases x and y. The transmission through one layer
is, using Eqs. (1), (2) and (6),

T (u
x

, u
y

) =
Z ⌫̃2

⌫̃1

d⌫̃w

x

(⌫̃)e�k

x

(⌫̃)u
x ⇥
Z ⌫̃2

⌫̃1

d⌫̃0 w
y

(⌫̃)e�k

y

(⌫̃0)u
y (7)

=

n

k,xX

l=1

n

k,yX

m=1

w

x,lwy,me

�k

x,lux

�k

y,mu

y . (8)

Defining u

xy

= u

x

+ u

y

, we can write the above transmission as

T (u
x

, u
y

) =
n

k,xX

l=1

n

k,yX

m=1

w

xy,lme

�k

xy,lmu

xy , (9)

where

k

xy,lm =
k

x,lux

+ k

y,mu

y

u

x

+ u

y

=
k

x,l⇣xu + k

y,m⇣yu

⇣
x

u + ⇣
y

u

(10)

=
k

x,l⇣x + k

y,m⇣y
⇣

x

+ ⇣
y

, (11)

and

w

xy,lm = w

x,lwy,m. (12)

Running n
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k,y pseudo-monochromatic calculations using these
k-coe�cients, the total flux can be calculated as usual using
Eqs. (3) and (4). This procedure can be replicated for an arbitrary
number of gases, however, the computation time increases by a
factor of n

k

for each gas added. This method therefore quickly
becomes too computationally expensive for practical use.

3.2.2. With resorting and rebinning

Lacis & Oinas (1991) suggested that resorting the k
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coe�cients and rebinning them to obtain a smaller number of k-
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xy,l would circumvent the scaling issue. First the k-

coe�cients of two gases are combined using Eqs. (11) and (12).
These n
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k,y k-coe�cients are sorted in increasing order, with

the weights sorted using the same mapping. We have used quick-
sort, shellsort and heapsort, all available as standard library rou-
tines (e.g. Press et al. 2007), and found that quicksort is generally
the fastest. We adopt quicksort in the current work.

The sorted k

xy,lm-coe�cients are then binned down to
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reduced k
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xy,l, where w
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used as weights. If a k

xy,lm-term extends over more than a sin-
gle reduced bin, it is split over neighbouring bins such that the
weights sum up to exactly w
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xy,l in each bin.

After this resorting and rebinning, the process is repeated,
adding one gas at a time, until all gases have been added. The
final reduced k-coe�cients are used to compute the fluxes and
heating rates for the atmosphere. This approach is consequently
much more flexible than pre-mixing gases as gas abundances can
be set at run-time.

3.3. Equivalent extinction

The last method of treating gaseous overlap that we consider
is equivalent extinction (Edwards 1996). It utilizes the fact that
in most bands there is a primary (major) absorber, and includes
additional absorbers through a grey “equivalent extinction”. In
each layer and band an equivalent extinction k̄ is calculated for
each minor gas, which for the thermal component is defined as
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where k

x,l are the k-coe�cients of the minor gas in the layer
with corresponding weights w

x,l, and Fv,l is the thermal flux
in the layer including only absorption by k-term l of the gas.
Pseudo-monochromatic calculations are performed for all n
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k-
coe�cients of the major gas in each band, with all other ab-
sorbers included by using the equivalent grey absorption k̄

x

. This
e↵ectively reduces the number of pseudo-monochromatic calcu-
lations required to one per k-coe�cient per gas.

The direct component of the stellar flux is readily included
by calculating the transmission for each gas separately and then
taking the product since, assuming random overlap, direct trans-
missions are multiplicative (see Eq. (6)). For the di↵use stellar
beam, which will be non-zero if scattering is included, the equiv-
alent extinction is defined by
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Fs⇤,l is the direct flux at the lower boundary including only k-
term l of the gas. The use of Fs⇤,l means that equivalent extinc-
tion in the current formulation is less suited for use in hot Jupiter
atmosphere models as the direct stellar flux at the bottom bound-
ary may be zero. In this case we use the smallest k-coe�cient for
the minor gas as k̄

x

. In this work, however, as we only consider
Rayleigh scattering, the main stellar radiation is contained in the
direct beam, making this a minor issue.

3.3.1. Determining the major absorber

We consider two approaches for determining the major absorber
in each band:
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be set at run-time.
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by calculating the transmission for each gas separately and then
taking the product since, assuming random overlap, direct trans-
missions are multiplicative (see Eq. (6)). For the di↵use stellar
beam, which will be non-zero if scattering is included, the equiv-
alent extinction is defined by
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P
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x,lkx,lFs⇤,l
P
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, (14)

Fs⇤,l is the direct flux at the lower boundary including only k-
term l of the gas. The use of Fs⇤,l means that equivalent extinc-
tion in the current formulation is less suited for use in hot Jupiter
atmosphere models as the direct stellar flux at the bottom bound-
ary may be zero. In this case we use the smallest k-coe�cient for
the minor gas as k̄

x

. In this work, however, as we only consider
Rayleigh scattering, the main stellar radiation is contained in the
direct beam, making this a minor issue.

3.3.1. Determining the major absorber

We consider two approaches for determining the major absorber
in each band:
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must be determined before the time consuming calculation of
k-coe�cients. A potential solution would be to add gas mixing
ratios as dimensions to the look-up table of k-coe�cients, but
the increased size of such a table is prohibitive for application in
atmosphere models with many absorbing gases.

3.2. The random overlap method

The second method we discuss is the random overlap
method (Lacis & Oinas 1991). Assuming that the absorption co-
e�cient of one gas x, is uncorrelated to that of a second gas y, i.e.
that their lines are randomly overlapping, the total transmission
of the gas mixture over some column density (u

x

, u
y

) is given by
a simple scalar product,

T (u
x

, u
y

) = T (u
x

) ⇥ T (u
y

). (6)

The assumption of uncorrelation between the absorption coe�-
cients of di↵erent gases will depend on the adopted bands and
its applicability should be verified by comparing to line-by-line
calculations. We perform such a comparison in Section 4.1.

3.2.1. Without resorting and rebinning

Equation (6) can be rewritten in terms of the k-coe�cients for
the individual gases x and y. The transmission through one layer
is, using Eqs. (1), (2) and (6),
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, we can write the above transmission as
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and

w

xy,lm = w

x,lwy,m. (12)

Running n

k,xn

k,y pseudo-monochromatic calculations using these
k-coe�cients, the total flux can be calculated as usual using
Eqs. (3) and (4). This procedure can be replicated for an arbitrary
number of gases, however, the computation time increases by a
factor of n

k

for each gas added. This method therefore quickly
becomes too computationally expensive for practical use.

3.2.2. With resorting and rebinning

Lacis & Oinas (1991) suggested that resorting the k

xy,lm-
coe�cients and rebinning them to obtain a smaller number of k-
coe�cients k

red
xy,l would circumvent the scaling issue. First the k-

coe�cients of two gases are combined using Eqs. (11) and (12).
These n

k,xn

k,y k-coe�cients are sorted in increasing order, with

the weights sorted using the same mapping. We have used quick-
sort, shellsort and heapsort, all available as standard library rou-
tines (e.g. Press et al. 2007), and found that quicksort is generally
the fastest. We adopt quicksort in the current work.

The sorted k

xy,lm-coe�cients are then binned down to
n

red
k

reduced k

red
xy,l-coe�cients. We determine the corresponding

weights w

red
xy,l, or bins, using a Gauss-Legendre quadrature in

SOCRATES, while we use uniform weights in ATMO, with an
arbitrary number of reduced k-coe�cients n

red
k

. The reduced co-
e�cients k

red
xy,l are found by computing a weighted average of all

k

xy,lm-terms belonging to each reduced bin w

red
xy,l, where w

xy,lm are
used as weights. If a k

xy,lm-term extends over more than a sin-
gle reduced bin, it is split over neighbouring bins such that the
weights sum up to exactly w

red
xy,l in each bin.

After this resorting and rebinning, the process is repeated,
adding one gas at a time, until all gases have been added. The
final reduced k-coe�cients are used to compute the fluxes and
heating rates for the atmosphere. This approach is consequently
much more flexible than pre-mixing gases as gas abundances can
be set at run-time.

3.3. Equivalent extinction

The last method of treating gaseous overlap that we consider
is equivalent extinction (Edwards 1996). It utilizes the fact that
in most bands there is a primary (major) absorber, and includes
additional absorbers through a grey “equivalent extinction”. In
each layer and band an equivalent extinction k̄ is calculated for
each minor gas, which for the thermal component is defined as
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where k

x,l are the k-coe�cients of the minor gas in the layer
with corresponding weights w

x,l, and Fv,l is the thermal flux
in the layer including only absorption by k-term l of the gas.
Pseudo-monochromatic calculations are performed for all n

k

k-
coe�cients of the major gas in each band, with all other ab-
sorbers included by using the equivalent grey absorption k̄

x

. This
e↵ectively reduces the number of pseudo-monochromatic calcu-
lations required to one per k-coe�cient per gas.

The direct component of the stellar flux is readily included
by calculating the transmission for each gas separately and then
taking the product since, assuming random overlap, direct trans-
missions are multiplicative (see Eq. (6)). For the di↵use stellar
beam, which will be non-zero if scattering is included, the equiv-
alent extinction is defined by
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Fs⇤,l is the direct flux at the lower boundary including only k-
term l of the gas. The use of Fs⇤,l means that equivalent extinc-
tion in the current formulation is less suited for use in hot Jupiter
atmosphere models as the direct stellar flux at the bottom bound-
ary may be zero. In this case we use the smallest k-coe�cient for
the minor gas as k̄

x

. In this work, however, as we only consider
Rayleigh scattering, the main stellar radiation is contained in the
direct beam, making this a minor issue.

3.3.1. Determining the major absorber

We consider two approaches for determining the major absorber
in each band:
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must be determined before the time consuming calculation of
k-coe�cients. A potential solution would be to add gas mixing
ratios as dimensions to the look-up table of k-coe�cients, but
the increased size of such a table is prohibitive for application in
atmosphere models with many absorbing gases.

3.2. The random overlap method

The second method we discuss is the random overlap
method (Lacis & Oinas 1991). Assuming that the absorption co-
e�cient of one gas x, is uncorrelated to that of a second gas y, i.e.
that their lines are randomly overlapping, the total transmission
of the gas mixture over some column density (u
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The assumption of uncorrelation between the absorption coe�-
cients of di↵erent gases will depend on the adopted bands and
its applicability should be verified by comparing to line-by-line
calculations. We perform such a comparison in Section 4.1.
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Equation (6) can be rewritten in terms of the k-coe�cients for
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Running n

k,xn

k,y pseudo-monochromatic calculations using these
k-coe�cients, the total flux can be calculated as usual using
Eqs. (3) and (4). This procedure can be replicated for an arbitrary
number of gases, however, the computation time increases by a
factor of n

k

for each gas added. This method therefore quickly
becomes too computationally expensive for practical use.

3.2.2. With resorting and rebinning

Lacis & Oinas (1991) suggested that resorting the k

xy,lm-
coe�cients and rebinning them to obtain a smaller number of k-
coe�cients k

red
xy,l would circumvent the scaling issue. First the k-

coe�cients of two gases are combined using Eqs. (11) and (12).
These n
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k,y k-coe�cients are sorted in increasing order, with

the weights sorted using the same mapping. We have used quick-
sort, shellsort and heapsort, all available as standard library rou-
tines (e.g. Press et al. 2007), and found that quicksort is generally
the fastest. We adopt quicksort in the current work.

The sorted k

xy,lm-coe�cients are then binned down to
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red
k

reduced k

red
xy,l-coe�cients. We determine the corresponding

weights w

red
xy,l, or bins, using a Gauss-Legendre quadrature in

SOCRATES, while we use uniform weights in ATMO, with an
arbitrary number of reduced k-coe�cients n

red
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. The reduced co-
e�cients k

red
xy,l are found by computing a weighted average of all
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xy,lm-terms belonging to each reduced bin w

red
xy,l, where w

xy,lm are
used as weights. If a k

xy,lm-term extends over more than a sin-
gle reduced bin, it is split over neighbouring bins such that the
weights sum up to exactly w

red
xy,l in each bin.

After this resorting and rebinning, the process is repeated,
adding one gas at a time, until all gases have been added. The
final reduced k-coe�cients are used to compute the fluxes and
heating rates for the atmosphere. This approach is consequently
much more flexible than pre-mixing gases as gas abundances can
be set at run-time.

3.3. Equivalent extinction

The last method of treating gaseous overlap that we consider
is equivalent extinction (Edwards 1996). It utilizes the fact that
in most bands there is a primary (major) absorber, and includes
additional absorbers through a grey “equivalent extinction”. In
each layer and band an equivalent extinction k̄ is calculated for
each minor gas, which for the thermal component is defined as
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where k

x,l are the k-coe�cients of the minor gas in the layer
with corresponding weights w

x,l, and Fv,l is the thermal flux
in the layer including only absorption by k-term l of the gas.
Pseudo-monochromatic calculations are performed for all n

k

k-
coe�cients of the major gas in each band, with all other ab-
sorbers included by using the equivalent grey absorption k̄

x

. This
e↵ectively reduces the number of pseudo-monochromatic calcu-
lations required to one per k-coe�cient per gas.

The direct component of the stellar flux is readily included
by calculating the transmission for each gas separately and then
taking the product since, assuming random overlap, direct trans-
missions are multiplicative (see Eq. (6)). For the di↵use stellar
beam, which will be non-zero if scattering is included, the equiv-
alent extinction is defined by
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Fs⇤,l is the direct flux at the lower boundary including only k-
term l of the gas. The use of Fs⇤,l means that equivalent extinc-
tion in the current formulation is less suited for use in hot Jupiter
atmosphere models as the direct stellar flux at the bottom bound-
ary may be zero. In this case we use the smallest k-coe�cient for
the minor gas as k̄

x

. In this work, however, as we only consider
Rayleigh scattering, the main stellar radiation is contained in the
direct beam, making this a minor issue.

3.3.1. Determining the major absorber

We consider two approaches for determining the major absorber
in each band:
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This	   plots	   shows	   the	   thermal	   night	   side	   flux	   obtained	  
using	   the	   random	   overlap	   method,	   with	   corresponding	  
errors	   calculated	   by	   comparing	   to	   line-‐by-‐line	   fluxes.	  
Fluxes	  obtained	  when	  using	  the	  correlated-‐k	  method	  with	  
the	  random	  overlap	  method	  match	  the	  line-‐by-‐line	  result	  
very	   well,	   with	   errors	   of	   a	   few	   percent.	   We	   note	   that	  
these	  errors	  are	  both	  due	  to	   the	  use	  of	   the	  correlated-‐k	  
method	   and	   the	   random	   overlap	   assumpWon,	   and	   in	  
agreement	   with	   the	   errors	   found	   in	   Amundsen	   et	   al.,	  
A&A,	  2014.	  Results	  for	  a	  day	  side	  P-‐T	  profile	  are	  similar.	  

This	  plot	  shows	  the	  thermal	  night	  side	  flux	  for	  the	  various	  
overlap	  treatments	  with	  corresponding	  errors	  calculated	  
by	  comparing	  to	  the	  random	  overlap	  method	  without	  
resorWng	  and	  rebinning	  (RO).	  It	  is	  clear	  that	  using	  the	  
random	  overlap	  method	  with	  resorWng	  and	  rebinning	  
(RORR)	  with	  an	  increasing	  number	  of	  k-‐terms	  significantly	  
decreases	  errors.	  Equivalent	  exWncWon	  (EE,	  AEE)	  is	  
somewhat	  less	  accurate	  than	  RORR	  with	  only	  8	  k-‐terms.	  
	  
Pre-‐mixed	  (PM)	  opaciWes	  are	  significantly	  less	  accurate	  
than	  all	  other	  overlap	  treatments,	  this	  stems	  from	  errors	  
introduced	  by	  the	  interpolaWon	  in	  the	  pre-‐mixed	  opacity	  
table.	  Changes	  in	  mixing	  raWos	  with	  temperature	  and	  
pressure	  can	  cause	  large	  changes	  in	  the	  pre-‐mixed	  
opaciWes	  which	  are	  not	  properly	  resolved	  by	  our	  opacity	  
table.	  We	  use	  an	  opacity	  table	  logarithmically	  spaced	  in	  
temperature	  and	  pressure,	  with	  20	  temperature	  points	  
between	  70	  K	  and	  3000	  K	  and	  30	  pressure	  points	  between	  
10-‐1	  and	  108	  Pa,	  with	  the	  opacity	  interpolaWon	  performed	  
linearly	  in	  temperature.	  This	  is	  similar	  to	  the	  resoluWon	  
used	  in	  previous	  works	  (e.g.	  Showman	  et	  al.,	  A&A,	  2009).	  
Results	  for	  a	  day	  side	  P-‐T	  profile	  are	  similar.	  
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Fig. 6. Fluxes (left) and absolute errors in fluxes (right) obtained with
the night side P–T profile in Fig. 1 using SOCRATES. Fluxes obtained
using the random overlap method without resorting and rebinning (RO)
are used to calculate errors for the random overlap with resorting and re-
binning (RORR) with 8, 16 and 32 rebinned k-terms, equivalent extinc-
tion (EE), adaptive equivalent extinction (AEE) and pre-mixed opacities
(PM).

Fig. 7. Same as Fig. 6 but for heating rates. L1 norms of the errors (see
Amundsen et al. 2014, the average heating rate error weighted by the
local heating rates) are 4.5 % for RORR 8, 1.9 % for RORR 16, 1.5 %
for RORR 32, 13 % for EE, 11 % for AEE and 38 % for PM.

plicit interpolation in mixing ratio with PM. The very small dif-
ferences remaining between RO and PM are mainly due to small
di↵erences in the precision of the k-coe�cients, which for RO
are derived for each gas separately while for PM for the mixture
directly. As in Amundsen et al. (2014) we use an opacity table
logarithmically spaced in temperature and pressure, with 20 tem-
perature points between 70 K and 3000 K and 30 pressure points
between 10�1 Pa and 108 Pa, with the opacity interpolation per-
formed linearly in temperature. This is similar to the resolution
used in previous works (Showman et al. 2009).

In Table 1 we give the relative computation times of the over-
lap treatments in Figs. 6 and 7. RO is, as expected, two to three
orders of magnitude slower than the other overlap treatments.
The quickest is PM, although (A)EE is only slightly slower.
RORR, even with only 8 rebinned k-terms is about a factor of
3 slower than (A)EE. We find that a significant fraction of the
computation time with RORR is spent sorting the k-coe�cients,
and it is therefore important to use an e�cient sorting algorithm.
As mentioned in Section 3.2.2 we use a standard quicksort im-

Fig. 8. Fluxes (left) and heating rates (right) obtained with the night side
P–T profile in Fig. 1 using constant mixing ratios equal to the mixing
ratios at P = 104 Pa, T = 1000 K. This eliminates errors caused by the
implicit interpolation of mixing ratios with PM which dominates the
errors seen using this overlap method in Figs. 6 and 7.

Table 1. Computation times of the thermal fluxes in SOCRATES for
various overlap treatments using the night side P–T profile in Fig. 1
not including TiO and VO opacity, see discussion in Section 4.2.1. The
relative CPU computation time is the time relative to the fastest overlap
method (PM).

CPU time [10�2 s] Relative CPU time
RO 1.1 ⇥ 103 1.7 ⇥ 103

RORR 32 12.2 18.5
RORR 16 5.0 7.6
RORR 8 2.8 4.2
(A)EE 1.0 1.5
PM 0.66 1.0

plementation, which we have found to consistently give good
performance compared to shellsort and heapsort.

4.2.2. Day side

We show in Figs. 9 and 10 total (thermal plus stellar) net upward
fluxes and heating rates obtained using the day side P–T profile
in Fig. 1, with corresponding errors, for all overlap treatments
considered here. Errors are, as for the night side, calculated by
comparing to results obtained using RO. Results are overall sim-
ilar to those obtained above for the night side, with errors being
smallest for a large number of rebinned k-terms with RORR. A
significant improvement in the accuracy is seen when using AEE
compared to EE, indicating that the appropriate major absorbers
have changed compared to the night side profile.

Perhaps the most striking result is the large errors caused
by using pre-mixed opacities, which are significantly larger for
the day side compared to the night side. The flux changes very
rapidly between 103 Pa and 104 Pa, which causes a large increase
in the heating rate. Looking at Fig. 1 this discontinuity occurs
as the P-T–profile crosses the condensation curve of TiO and
VO. Both molecules are strong absorbers in the visible, and the
presence of these molecules leads to a strong absorption of the
incoming stellar radiation. The steep vertical gradient in the mix-
ing ratios of TiO and VO when the temperature is near the con-
densation temperature causes a similarly steep gradient in the
opacity. When using PM this transition is smoothed out as the
resolving power is limited by the number of P–T points in the
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Conclusions	  
•  The	  random	  overlap	  method	  without	  resorWng	  and	  

rebining	  is	  accurate	  and	  flexible,	  but	  slow.	  
•  The	   random	   overlap	   method	   with	   resorWng	   and	  

rebinning	   is	   accurate	   and	   flexible,	   and	   is	   fast	  
enough	  to	  be	  used	  in	  1D	  models.	  

•  Equivalent	  exWncWon	  is	  faster	  than	  RORR,	  although	  
slightly	  less	  accurate,	  but	  sWll	  flexible.	  Can	  be	  used	  
in	  GCMs.	  

•  Pre-‐mixed	   opaciWes	   are	   not	   flexible	   and	   can	   lead	  
to	  significant	  errors	  if	  mixing	  raWos	  change	  rapidly.	  


