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Introduction 
Loss of oxygen from Earth’s oceans has happened repeatedly over at least the last billion 
years, and is probably occurring today.  In the past, major ocean anoxic events (OAEs) 
have generally been associated with warm climates, high carbon dioxide concentrations, 
and sometimes large igneous province volcanism.  Many of these anoxic events have 
been regional, but at least some, e.g., OAE-2 (93 million years ago) and the end-Permian 
mass extinction 252 million years ago, appear to have been global.  Much more recently, 
expansions of oxygen minimum zones (OMZs) occurred during the terminations of ice 
ages as the ocean emerged from its glacial state.   
 
Today, loss of oxygen from the coastal ocean frequently is associated with anthropogenic 
eutrophication resulting from agricultural runoff and other societal processes.  However, 
it appears that oxygen is also declining from both the North Pacific and the tropical 
oceans worldwide (Whitney et al., 2007; Keeling et al., 2010; Figures 1 & 2).  It is 
unclear whether the loss throughout the open ocean is a secular trend and related to 
climate change; the result of natural, cyclical processes; or a combination of both.  If 
related to climate change, a number of important factors may be involved, including the 
decreasing solubility of oxygen in water with increasing temperature, changes in wind 
forcing with changes in geographical temperature patterns, and increasing ocean 
stratification with increasing surface temperature and freshening. 

	
  
Fig. 1 – Global ocean oxygen concentration at 200 meter depth based on climatological measurements.  
Note the large-scale regions of low oxygen (oxygen minimum zones) throughout the low-latitude oceans and 
the subarctic Pacific (Courtesy of Oscar Schofield; data from http://www.nodc.noaa.gov/OC5/indprod.html)	
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The oxygen content of the oceans is determined by the balance between oxygen supply to 
the ocean interior, a process called ventilation, and the consumption of oxygen by 
respiring (mostly microbial) organisms and other oxidative processes.  Ventilation of the 
deep ocean interior (> 1000 m) occurs today on time scales of hundreds of years in two 
principal regions: the North Atlantic and the circum-Antarctic ocean, particularly the 
Ross and Weddell seas. The locations of these sites of ventilation in the modern oceans 
are dictated by the current plate tectonic configuration of continental land masses.  
Hence, the patterns, and possibly the rates, of ventilation in the ancient oceans were 
inherently different from those of the present.  The value of the deep-time paleo-record 
for understanding the potential for future deoxygenation events therefore lies in the 
lessons learned about processes and mechanisms rather than as exact analogs for future 
ocean states. 
 
 

 
Fig. 2 – The decadal trend and oscillations in oxygen concentrations on constant potential density 
surfaces (isopycnals 26.5, 26.7, 26.9 and 27.0) at Ocean Station P (50 N, 145 W).  Solid line is the linear 
regression of the 26.5 isopycnal and shows an oxygen loss rate of 0.67 uM y-1.  The dashed sine wave has 
an amplitude of 50 uM and a period of 18.6 years (centered on 80 uM), and is used to show the oscillation 
in oxygen levels on the 26.9 isopycnal.  Ventilation of the 26.9 isopycnal surface likely occurs only in the 
Okhotsk Sea where dense waters are produced during ice formation. The oscillation in oxygen levels has 
been attributed to the 18.6-year lunar nodal cycle which affects the mixing occurring through the Kurile 
Island passes between Okhotsk and the subarctic Pacific. (Whitney et al., 2007; Whitney, personal 
communication)	
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Digression - Ventilation encompasses all those processes that transfer and transport 
oxygen into the vast ocean interior.  Ventillation happens from a combination of air-
sea gas exchange, that makes surface waters dense, causing them to sink (subduct).  
Subduction of water occurs by a variety of processes, including cooling and 
salinification, convection, and brine rejection due to seasonal sea ice formation. 
Arising from a confluence of meteorological and ocean circulation circumstances, 
these processes tend to occur in specific geographic areas or “ventilation windows” 
that act as entry points for oxygen into the ocean. Two such windows are the North 
Atlantic and the Antarctic Oceans.  (Fig. 3) Ocean circulation, constrained by a 
balance between a combination of wind and thermohaline forcing and ocean physics 
(in particular the geostrophic balance), plays a role in how oxygen is redistributed in 
the ocean interior. Turbulent mixing, both horizontal and vertical, is superimposed 
on this circulation and is likely an important, if not dominant, mechanism in oxygen 
impoverished regions. The key concern is that the processes responsible for ocean 
ventilation are climate-driven and hence will most likely alter in character in 
response to global change. This response will have a first-order impact on the 
oceanic distribution and inventory of oxygen. 
	
  

	
  
	
  
Fig. 3 – Global overturning circulation schematic from a Southern Ocean perspective, after Gordon 
(1991), Schmitz (1996), and Lumpkin and Speer (2007). (Talley, 2011) 
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The potential consequences of ocean oxygen loss are profound. Long-term declines could 
lead to reduced biological productivity and diversity, altered animal behavior, declines in 
fisheries, redistributions of communities, and altered biogeochemical cycles. 
Environmental feedbacks may also result, potentially including increased production of 
greenhouse gasses such as N2O and CH4.  In the past, major shifts in populations and 
even mass extinctions occurred during periods when ocean oxygen content was low. 
 
Digression – Terms We are concerned about the oxygen content of sea water because 
of its impact on biological processes as a respiratory electron acceptor.  Most of the 
oceanic water column is well oxygenated with concentrations above 50-100 
micromolar. Such waters are commonly referred to as oxic. When oxygen 
concentrations fall below 50-100 µM, many investigators describe such waters as 
hypoxic, but the boundary between oxic and hypoxic waters is variable and depends 
on the organisms under investigation, among other factors. Oxygen concentrations 
lower than ~ 5 µM are referred to as suboxic by many marine scientists. Waters that 
are essentially oxygen free (below detection) are termed anoxic. In extreme cases of 
high oxygen demand and low oxygen supply, hydrogen sulfide, the waste product of 
microbial sulfate reduction, accumulates, and the water is said to be euxinic.  

 
In general, hypoxia refers to a situation in which the organism(s) under 
consideration experience stress due to reduced oxygen.  Such stress can occur at 
levels of about 100 micromolar for large, active animals, such as a tuna, but occurs 
at concentrations as low as ~5 µM for small organisms or microbes.  Thus, one 
cannot give a precise description of hypoxia, and authors should state 
concentrations ranges when using this term.  At the higher range, hypoxic waters 
comprise ~10% of the oceanic volume. 
 
This workshop was held to bring together researchers who study the ocean’s oxygen 
content in the past and present.  The goal was to identify ways in which one research area 
could inform the other and to develop collaborative opportunities to advance our overall 
understanding of the controls on ocean oxygen content. 
 
Current state of knowledge 
 
The Paleo-oceans 
 
There is clear geological evidence that ocean oxygen concentrations have changed over 
time. In the distant past, the Earth experienced repeated periods of widespread, perhaps 
ocean-scale, anoxia sometimes lasting millions of years.  These episodes, sometimes 
marked by major biotic extinctions (Figure 4), provide critical windows to the full range 
of climatic and oceanic extremes possible.  Most often, these events occurred during 
times when atmospheric CO2 and inferred temperature were both high—periods when 
there was limited or no ice at the poles—but generally are linked to additional triggers, 
most commonly large-scale tectonic processes such as volcanism.  It becomes 
increasingly difficult to assess the spatial and temporal persistence of ancient ocean 
anoxia with greater geologic age because the principal evidence, in the form of “proxies” 
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such as carbon isotope records, is contained in deep-ocean sediments that are lost through 
subduction or uplift and erosion.  For the most-ancient events (prior to ~250Ma), the 
geologic record is preserved primarily in sediments from continental margins and 
epicontinental seas.  For the OAEs of the late Mesozoic (occurring mostly between ~140 
and 85 Ma), evidence for ocean-scale anoxia is preserved in seafloor not yet lost to 
tectonic processes.  Even more recently, there are detailed records of brief oceanic 
hypoxia at intermediate water depths accompanying the extreme, but transient global 
warming at the Paleocene-Eocene (55 Ma) boundary (Thomas, 2007).  Despite the 
limitations, recent years have seen great improvement in our understanding of the 
patterns of past ocean oxygen deficiency and the drivers and feedbacks that underlie local 
and global oceanic O2 budgets. 
	
  
 
Digression – Proxies Many environmental variables are difficult or impossible to 
measure directly, and this is especially true of the ancient world. Thus, our 
historical knowledge is drawn from ‘proxies’—measurable properties of a sediment 
or sedimentary rock that scale in a predictable way to some immeasurable 
parameter of interest.  Importantly, the best of these ecological, (bio)geochemical, 
and mineralogical tracers of transient primary properties are quantitative and 
preserve their archives deep into the geologic record. For example, O2 
concentrations present in seawater at the time underlying sediment is deposited are 
obviously not preserved in paleo-systems, but proxy fingerprints within the 
resulting rock can provide semi-quantitative measures of the initial dissolved O2 
levels.   
 
Ecological proxies include the composition of faunal assemblages and the degree to 
which animals and unicellular eukaryotes live within and disturb sediment as a 
function of varying O2 content.  Geochemical proxies for paleo-O2 concentration are 
both organic and inorganic and include several within the C-S-Fe system and the 
distribution patterns of numerous redox-sensitive trace metals (e.g., Mo, Mn, U, Re, 
and others).  These approaches—defined and calibrated in modern O2-deficient 
settings such as the Black Sea—have long histories of successful application.  
Mineralogic proxies include pyrite framboid size relationships, phosphorous 
distributions and associated C/P relationships, and certain layered silicate minerals 
(e.g., glauconite). Isotopic proxies (e.g., δ15N, δ34Spyrite δ56Fe, δ98Mo, U-system 
isotopes) record equilibrium or kinetic controls on processes that are ultimately 
mediated by molecular oxygen. The best of these can provide estimates of regional 
or global conditions with only local measurements by capturing seawater 
compositions that vary as a function of large-scale mass balance relationships. 
Certain organic molecules (biomarkers) preserved in sediments can be ascribed to 
microbial taxa with well-known redox-sensitive environmental requirements, 
including signatures of free hydrogen sulfide conditions within the photic zone of 
ancient water columns.  Multiple proxies measured on the same samples at high 
stratigraphic resolution provide our most robust records of paleo-O2 levels and their 
temporal variations. 
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Multi-proxy elemental, mineralogical, isotopic, molecular, and paleontological records 
preserved in Phanerozoic sedimentary rocks (542 million years [Ma] old to the present) 
point to numerous anoxic events (Fig. 4), including evidence for free hydrogen sulfide 
extending into the photic zone—the ocean’s surface layer where photosynthesis occurs.  

	
  
	
  
Fig. 4 – Schematic	
  illustration	
  of	
  atmosphere	
  and	
  ocean	
  redox	
  evolution	
  through	
  time.	
  The	
  
atmosphere	
  went	
  through	
  three	
  broad	
  stages	
  of	
  rising	
  O2	
  delineated	
  by	
  at	
  least	
  two	
  major	
  oxygenation	
  
steps.	
  The	
  first,	
  the	
  “Great	
  Oxidation	
  Event”	
  (G.O.E)	
  around	
  2.4	
  Ga,	
  marks	
  the	
  irreversible	
  transition	
  
from	
  an	
  anaerobic	
  to	
  an	
  aerobic	
  biosphere.	
  It	
  was	
  likely	
  preceded	
  by	
  one	
  or	
  more	
  “whiffs”	
  of	
  low	
  O2	
  at	
  
2.5	
  Ga	
  and	
  earlier.	
  A	
  second	
  increase	
  at	
  ~	
  550	
  Ma	
  correlates	
  with	
  the	
  emergence	
  of	
  metazoans.	
  
Oxygenation	
  of	
  the	
  oceans	
  also	
  proceeded	
  through	
  multiple	
  stages.	
  The	
  deep	
  oceans,	
  shown	
  here,	
  
remained	
  anoxic,	
  or	
  nearly	
  so,	
  until	
  ~	
  550	
  Ma.	
  Oxygenation	
  may	
  have	
  involved	
  two	
  major	
  steps	
  at	
  550	
  
Ma	
  and	
  ~	
  400	
  Ma.	
  Subsequently,	
  an	
  era	
  of	
  generally	
  oxygenated	
  deep	
  oceans	
  may	
  have	
  been	
  
punctuated	
  by	
  several	
  short-­lived	
  episodes	
  of	
  widespread	
  ocean	
  anoxia	
  (indicated	
  by	
  down-­pointing	
  
arrows),	
  notably	
  clustered	
  around	
  at	
  ~	
  400,	
  250	
  and	
  100	
  Ma,	
  although	
  the	
  global	
  extent	
  and	
  balance	
  
between	
  deep	
  and	
  shallow	
  ocean	
  anoxia	
  remain	
  areas	
  of	
  active	
  research. The correspondence between 
periods of low oceanic oxygen and extinction is complex. Red boxes delineate the best studied episodes of 
widespread, perhaps global oxygen deficiency in the Phanerozoic deep ocean. Note the extended period 
during the Mesozoic greenhouse climate marked by repeated and widespread ocean anoxic events 
(OAEs).  While there is often a correspondence between periods of inferred low oxygen in the ocean and 
high extinction rates for marine organisms, in some cases (e.g., the Paleocene-Eocene Thermal Maximum 
-PETM) low oxygen conditions were not associated with major extinctions. After Takashima et al. (2006) 
and Raup and Sepkoski (1986). Figure courtesy Ariel Anbar and Timothy Lyons.	
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There is strong evidence that some of these anoxic events were global in scale.  The 
inventory and spatial distribution of continental crust was a critical variable, dictating the 
relative rates of weathering and burial of organic matter, both of which impacted O2 
content of the oceans and atmosphere, as well as the patterns of ocean circulation.  
Weathering rates also controlled the fluxes and spatial patterns of nutrient delivery to the 
ocean (e.g., P and Fe).  An associated phenomenon, also under tectonic influence, was the 
emplacement of large igneous provinces that seem to have fostered, or at least 
accompanied, low-O2 conditions in the ocean.	
  
	
  
A complementary geological window is provided by the ice age world, when the 
continental configuration was the same as today, but the oceans were colder. Multiple 
proxies, measured in a large number of globally distributed marine sediment records, 
show coherent patterns of contraction for oxygen minimum zones (OMZ) during cold 
periods (Galbraith et al., 2004) and dramatic expansions of OMZs during intervals of 
rapid warming (Zheng et al., 2000). The most recent warming occurred at the end of the 
last ice age, when the large modern OMZs blossomed throughout intermediate depths of 
the Indian and Pacific Oceans, as physical oxygen supply decreased and export 
production patterns shifted. Recent work has revealed that these OMZ expansions were 
not synchronous between the northern and southern hemispheres but instead progressed 
in lockstep with atmospheric warming in the respective hemispheres, as recorded in ice 
core records (Robinson et al., 2007). The overwhelming message from this recent cold-
to-warm climate transition is that the extent of oxygen-depleted waters is very sensitive 
to climate. 
	
  
Changes in ocean oxygen levels have been an important factor in major bio-evolutionary 
events, including the advent of animals and episodic mass extinctions (Figure 4).  Rising 
oxygen levels starting over 2 billion years ago were caused by, and in turn contributed to, 
the evolution of life, including the first appearance and proliferation of animals roughly 
600 million years (Ma) ago (Canfield et al. 2007; Knoll and Carroll, 1999; Narbonne and 
Gehling, 2003).  Subsequent intervals of low atmospheric oxygen levels contributed to 
oceanic hypoxia and marine biotic crises during the Phanerozoic (Huey and Ward, 2005).  
For example, widespread anoxia in shallow continental seas coincided with an extended 
biotic crisis during the Middle Devonian to Early Carboniferous periods (385-360 Ma), 
with maxima in extinction rates at times of peak anoxia (Algeo and Scheckler, 1998). 
Marine anoxia was widespread in both shallow-marine and deep-ocean environments 
during the Permian-Triassic boundary crisis (~252 Ma), the largest mass extinction event 
in Phanerozoic history—marked by the loss of ~90% of marine taxa (Benton 2003; Erwin 
2006; Wignall and Twitchett, 1996; Grice et al., 2005). The extinction of benthic 
foraminifera during the Paleocene-Eocene (55 Ma) thermal maximum provides a clear 
example of how abrupt global warming (on a scale similar to that predicted for the future) 
affected ocean oxygen levels and biota (Thomas 1998, 2007). 
 
During the warming of the last deglaciation, oxygen-poor waters expanded rapidly 
throughout the upper 1 km of the oceans, with dramatic de-oxygenation occurring locally 
on millennial timescales (Higginson et al., 2004, De Pol Holz et al., 2006). It is clear that 
the marine biosphere was impacted by these changes, with greater loss of fixed nitrogen 
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(Altabet et al., 1995, Ganeshram et al., 1995) and more nitrous oxide production during 
warm periods (Suthhof et al., 2001, Schmittner and Galbraith, 2008, Agnihotri et al., 
2006).  

 
The association of oceanic deoxygenation and marine biotic crises reflects a combination 
of effects linked directly and indirectly to low levels of dissolved seawater O2.  For 
example, an immediate consequence of reduced oxygen levels is to constrain organisms 
with high respiratory demands.  An additional consequence is to provide greater ecospace 
for anaerobic communities, which frequently leads to elevated concentrations of 
compounds (e.g., CO2 and H2S) that are toxic to the vast majority of animal taxa (Knoll 
et al., 1996; Grice et al., 2005).  Biotic responses to changing ocean O2 levels, as captured 
in the deep-time record, thus provide an essential predictive window to the future impacts 
of ocean deoxygenation.   
 
The Modern Oceans 
 
The number of research papers about changes in oxygen concentrations in the 
contemporary ocean has increased rapidly in the last decade because there are now 
enough reliable measurements at the same location to make temporal comparisons.  
These comparisons come from all ocean basins (Keeling et al., 2010), but they are most 
numerous in the subarctic North Pacific, where oxygen transport to the interior ocean is 
weak.  Observations of oxygen decrease in the open ocean thermocline between the 
1970s and 1990s (e.g., Emerson et al., 2004) captured much attention because it was 
suggested that declining oxygen levels might be an early indicator of human impact on 
oceanic ecosystems through global warming.  Model reproductions of these trends 
indicated that they were primarily induced by changes in ocean ventilation and 
circulation (Deutsch et al., 2006). However, subsequent measurements in the first decade 
of the new millennium (Mecking et al., 2008) indicated that the declines in oxygen levels 
were not secular but rather part of a decadal scale cycle.  A recent comparison of data 
from global databases indicates a statistically significant decrease in oxygen 
concentration between the 1960/70’s and 1990-2000 in the equatorial ocean and 
suggestive changes, both increases and decreases, in other regions (Stramma et al., 2010). 

 
There are two longer time-series observations in the North Pacific with high-quality 
measurements in the open ocean over periods of about 50 years (Ono et al., 2001; 
Whitney et al., 2007).  These data indicate a roughly 20-year cycle of varying oxygen 
concentration superimposed on a monotonic oxygen decrease of ~ 0.5 µmol kg-1 yr-1.  
The cycle in oxygen concentration has been correlated with an 18.6-year periodic 
fluctuation of the diurnal tide of the ocean due to lunar precession (Whitney et al., 2007; 
Keeling, 2010).  This process is believed to affect ocean ventilation by increasing mixing 
across the density gradient near the Kuril Islands at the mouth of the Sea of Okhotsk 
(Yasuda et al., 2006), a key area for ventilation of the North Pacific (Figure 2).  The 
monotonic decrease could be the limb of a longer cycle or it may be the ocean’s response 
to more restricted ventilation because of anthropogenically induced global warming.  
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Deoxygenation on ocean margins is in some places more dramatic than in the open ocean 
because of anthropogenic eutrophication (e.g., the Mississippi plume described by 
Rabalais and Turner, 2001, among others) of semi-enclosed coastal waters (e.g., Gooday 
et al., 2009).  There have also been observations of extreme oxygen depletion on open 
continental shelves that appear to have been driven by natural ocean biogeochemical 
processes (e.g., Falkowski et al., 1980; Grantham et al., 2004; Hales et al., 2006; Chan et 
al., 2008).  Continental margin upwelling systems are particularly prone to deoxygenation 
because their source waters are already low in O2 and high in nutrients.  The high nutrient 
levels fuel elevated production rates of photosynthetic organic matter.  When this matter 
sinks and is respired at depth, oxygen concentrations are further reduced, with more 
severe effects when the water column is also stratified.   
 
The relative roles of on-shelf biogeochemical cycling and source-water secular trends are 
unclear.  Off the U.S. west coast, upwelled waters carry sufficient nutrient loads to induce 
extreme deoxygenation when photosynthetic products are trapped and respired locally.  
Such conditions are observed only intermittently, however, suggesting that a pathway of 
organic carbon export to the adjacent deep ocean must be playing a role in avoiding these 
conditions in many other years (Hales et al., 2006).  The necessity of this deep-ocean 
export suggests a reason for the proximity of ocean interior OMZs and continental 
margin upwelling systems (e.g., Stramma et al., 2010).  If a majority of the organic 
matter produced in upwelling systems is exported to the adjacent ocean-interior OMZ, 
the respiratory consumption in these areas will be increased relative to other similarly 
ventilated ocean interior waters. 
 
Recent analysis of relatively long-term databases indicates trends of deoxygenation in 
waters that are sources for margin upwelling systems and shoaling of the depths of 
critical O2 concentration iso-surfaces (Bograd et al., 2008).  These O2-lean waters are 
associated with migration of impacted fish stocks in the California Current System (F. 
Whitney, unpublished results).  Even moderate long-term trends in declining source-
water O2 and increasing nutrient concentrations will cause currently intermittent but 
extreme deoxygenation conditions to become more frequent, intense, and persistent. 
 
Our best tools for assessing future anthropogenic influence on ocean oxygen 
concentrations are global circulation models that succeed in reproducing observed 
changes over the past 50 years and include forcing due to future global warming.  In 
nearly every case, the predicted concentrations decrease in the open ocean because of 
decreased ventilation due to stronger stratification (Oschlies et al., 2008; Hofmann and 
Schellnhuber, 2009).   Presently, global ocean models (coupled 3-D general circulation 
models) do not resolve near-shore waters well enough to predict future trends in these 
regions. Future measurements should focus on determining the validity of the predicted 
open-ocean trends and the intensity of nearshore deoxygenation and its biological 
consequences. 
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Research needs 
 
Improved Models 
 
Ocean models are crucial tools for integrating the variety of processes that govern the 
distribution of O2 in the modern ocean and for exploring its changes on a wide range of 
time scales.  In addition, they serve to identify which processes might have driven large-
scale changes in ocean oxygen content during historic greenhouse and super-greenhouse 
conditions, including periods of mass extinction.  In order to better address changes in 
ocean oxygenation, model development is needed to improve the simulation of O2 in 
current General Circulation Models (GCMs) as well as to establish model hierarchies that 
leverage the high-resolution capabilities of current GCMs and the more efficient but 
lower-resolution Earth System Models of Intermediate Complexity (EMICs).  
 
Simulations of biogeochemical cycles in the modern ocean reproduce reasonably well  
the observed large-scale O2 distributions.  However, several processes of O2 supply and 
consumption are only crudely represented, and, as a result, there are significant 
discrepancies between models and observations in some key areas.  For example, most (if 
not all) models predict much larger anoxic zones in the contemporary ocean than those 
observed, suggesting that we lack the information to parameterize all the critical 
processes. Some of the uncertainties may result from our poor characterization of (1) the 
dependence of oxygen utilization rate on environmental parameters such organic carbon 
flux, temperature, and oxygen concentration, especially in the low-O2 regions; (2) the 
role of coastal margins and mixing and stirring by eddies in the supply of oxygen to 
zones that are not directly ventilated by the mean flow; (3) the role of 
equatorial/poleward undercurrent systems in supplying O2-poor water to OMZs; and (4) 
the physical processes that determine properties such as the nutrient and O2 content of 
newly ventilated water. 
 
These problems should be addressed with the use of models that explicitly resolve the 
narrow currents and eddies that help to ventilate low-O2 regions.  In addition, such 
models need to include more biologically based representations of organic matter 
respiration.  The combined development of eddy-resolving and biologically mechanistic 
models of O2 cycling will permit the testing of such models against observations at the 
spatial and temporal scales now being achieved with measurements.   
 
Models can also benefit from advances by the paleoceanographic community in 
investigating radically different ocean conditions in the geological past. To the extent that  
oxygen-deficient and fully anoxic zones may expand in the future, a stronger 
collaboration between modern- and paleo-oceanographers, involving model-model and 
model-data comparisons for modern and ancient data sets, will be highly beneficial to 
both communities. 	
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Remote Sensing 
 
A number of remote sensing observations have relevance to the ocean deoxygenation 
question. All are indirect, with ocean observables used as proxies for relevant forcings 
that drive both ventilation and respiration processes.  Satellite-derived records of sea 
surface temperature, altimetry, wind stress, and curl and salinity allow us to characterize 
the scale of variability of physical processes driving ocean ventilation from regional to 
global scales.  In addition, remotely sensed measurements of the ocean provide us with 
information that can help us constrain respiration rates in the ocean interior.  For 
example, new ocean color products can provide estimates of the concentrations of 
particulate organic carbon (Stramski et al., 1999) and calcite (Balch et al., 2005), net 
primary production (Behrenfeld et al. 2005), and estimates of the particle size spectrum 
(Kostadinov et al., 2009). Ongoing developments also include estimates of phytoplankton 
functional group abundances (Alvain et al., 2005), which are important for estimating 
ballast effects and levels of chromophoric dissolved organic matter (CDOM, a proxy for 
biological oxygen consumption in the interior, Nelson et al., 2010; Fig. 5). From these 
datasets the sinking rate of organic carbon and thus particulate carbon export can be 
estimated, leading to estimates of oxygen utilization rate (Martin et al., 1987). However, 
in order to maximize the utility of these datasets, we need to develop integrated remote 
sensing/field observation/modeling approaches toward linking the surface to subsurface 
ocean for deoxygenation assessment.	
  
	
  

	
  
	
  
Fig. 5 – Global mean distribution of CDOM and particulate detrital material (as absorption coefficient at 443 
nm, m-1) estimated from SeaWiFS mission ocean color data (from Nelson et al., 2010, used by permission of the 
author). CDOM abundance in the ocean interior has been linked to remineralization processes including 
apparent oxygen utilization. 
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Improving the Historical Record 
 
Our ability to quantify ocean oxygen concentrations in the geological record is critically 
dependent on geochemical proxies. The C-S-Fe system has long been used as a redox 
proxy (e.g., Raiswell et al., 1988), with Fe partitioning within sediments standing out as 
our best inorganic measure of local O2 conditions (e.g., Lyons and Severmann, 2006; as 
reviewed in Lyons et al., 2009). Routinely constrained temporal variations in C and S 
isotope compositions of the ocean mirror the relative burial rates of organic matter and 
pyrite, which can be linked through simple modeling to the prevailing O2 conditions in 
the ocean. Elemental concentrations of redox-sensitive trace metals (e.g., Mo, U) in 
marine sediments can be used to constrain both local dissolved O2 levels and deepwater 
ventilation rates (Algeo and Lyons, 2006; Algeo and Tribovillard, 2009) and, through 
inventory relationships, the global extent of low O2 levels in the oceans and atmosphere 
(Scott et al., 2008).  
 
Recent innovations in analytical instrumentation have permitted accurate determinations 
of isotopic variation in high-mass elements such as Fe, Mo, and U, all of which are redox 
sensitive and thus potentially useful recorders of paleo-redox conditions.  Iron isotope 
distributions, for example, can be diagnostic of iron cycling patterns unique to anoxic 
basins and oceans (Rouxel et al., 2005; Johnson et al., 2008; Severmann et al., 2009; 
Duan et al., 2010). Sediments deposited from anoxic waters thus provide a mechanism 
for tracking the isotopic composition of the ocean and its balance of oxic versus anoxic 
deposition through time. The long residence times of Mo (~800 kyr) and U (~450 kyr) in 
seawater make them potentially useful as proxies for global-scale variations in ocean 
redox conditions (Anbar and Rouxel, 2007).  
 
Organic molecules, most of which are derived from lipids, record paleo-redox conditions 
in several ways.  They can be diagnostic of the metabolic physiologies of diverse 
microbes; their preservation pathways can be determined by paleo-redox conditions 
(Brocks and Summons, 2004; Knoll et al., 2007); and they carry oceanographic carbon, 
hydrogen, and nitrogen isotope signals with great fidelity (Hayes, 2001). Combined, 
organic and inorganic methods allow us to infer the presence and specifically the depth of 
anoxic conditions in the ancient ocean (e.g., Anbar and Knoll, 2002; Lyons et al., 2009). 
Our confidence in these inferences would be greatly enhanced by improved knowledge of 
the phylognetic distributions, biosynthesis, and physiological roles of geostable 
molecules.  This gap is an important area of ongoing and future research. 

 
Biological proxies based on fossil remains can also be valuable sources of information on 
past events.  The chemical composition of animal shells; mollusk statoliths; or fish 
otoliths, bones, teeth, jaws, or scales may provide clues about exposure to hypoxia (as 
well as other environmental perturbations). Understanding the signatures in hard parts of 
animals exposed to hypoxic, suboxic, or anoxic waters may help us interpret O2 in the 
sedimentary archive over short and long time scales, and microsampling provides 
resolution of subannual variation over the lifetime of an organism. 
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Despite recent progress with paleo-O2 proxies and our greatly refined view of the 
temporal and spatial variations in early ocean redox conditions (reviewed, for example, in 
Lyons et al., 2009), the paleoceanographic frontier is defined by our need for improved 
proxies that speak specifically to global conditions.  Also needed is further drill core 
sampling of fresh, unweathered materials on land, collected without trace element and 
organic contamination, and further ocean drilling along depth transects to enable 
reconstruction of the vertical extent of oxygen minimum zones in the past.   
 
Understanding the geologic record of ocean anoxia would also be aided by stronger 
integration of paleobiological and geochemical investigations of past oceanic anoxic 
intervals at even higher stratigraphic resolution.  Studies of the Cenozoic (65 Ma to the 
present), for which there is an extensive record of open ocean to continental margin 
environments, are of obvious value, as are investigations of sediments deposited below 
modern-day oxygen minimum zones as important analogs for ancient systems. 
 
Oxygen Observational Records for the Modern Ocean 
 
The best modern records of ocean oxygen concentration show ~bi-decadal oscillations 
superimposed on a slow ~50-year record of decrease.  Unfortunately, many of the data 
archived over this time frame are of poor quality.  The overall quality improved circa 
1965 with the publication of papers by Carpenter (1965a,b) and Carritt and Carpenter 
(1966), which codified the methodology.  Nevertheless, some post-1965 data are poor, 
and some groups obtained high quality data much earlier than 1965. A quality assessment 
of the archived data is essential to gain the maximum possible information from these 
historical observations—as backdrops for assessing current and future change.   
 
Even the highest quality historical observations were not collected with the goal of 
resolving the low-period oscillations and longer-term trends of interest here.  Future 
observations must strive for improved spatial-temporal resolution. Ships, moorings, 
floats, gliders, and the expanding international network of ocean observatories will all be 
important infrastructure for developing a robust data set. Standardized protocol and 
calibration procedures will also be important for ensuring high quality data that are 
readily compared.  Sampling resolution should reflect the characteristic spatial and 
temporal scales of variability for the particular system under study, such that comparisons 
can be made without bias over long temporal and spatial scales.  This goal will require a 
multi-platform sampling strategy. Emphasis should be placed on regions deemed to be 
the most sensitive recorders of changes in oxygen concentrations, such as OMZs and 
low-O2 regions. 
 
Experimental Research 

 
A barrier to understanding changes in contemporary ocean oxygen content is an 
incomplete understanding of anoxia in the geological record.  Although modern 
circulation models are able to accurately simulate the locations of oxygen minimum zone 
boundaries, they tend to produce excessive drawdown of oxygen and nitrate within those 
zones (c.f., Sarmiento et al., 2010).  It is unclear whether this problem is due to a failure 
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to properly simulate the physics governing vertical and lateral exchange in the OMZs or 
whether there are biogeochemical controls on remineralization that cause it to occur at 
shallower depths over the OMZs.   
 
One way to potentially address this issue is by conducting an experiment in the field. The 
question of whether physical exchange was properly simulated could be addressed by a 
tracer release experiment—with patches deployed on both sides of the physical front that 
marks the western edge of the OMZ, as well as by high resolution measurements of 
tracers in the oxycline above and below the OMZ (particularly CFCs but potentially 
including others). Because mixing above the OMZ has potentially interesting feedbacks 
to climate through ocean color (Anderson et al., 2009; Gnanadesikan and Anderson, 
2009) as well as through controls on biological productivity, bio-optical measurements of 
color and solar absorption should be a part of this effort as well. The question of 
biogeochemical feedbacks on remineralization would require measurements of particle 
fluxes as well as detailed examination of the processes (remineralization rate, 
zooplankton abundance) controlling how material is reprocessed as it moves into the 
OMZ. It is possible that Lagrangian floats and gliders could play an important role in 
characterizing both the particle fluxes and the horizontal currents involved in setting the 
biogeochemical structure of this region, but in-situ characterization of the bacterial and 
zooplankton communities would still be required to generate a properly mechanistic 
understanding. NASA could play a key role both in supporting characterization of 
ecosystem structure and particulate dynamics on the biological side and altimetry and 
winds in data-assimilative models on the physical side.   
 
Implications for Technology Development 
 
NASA and other agencies can catalyze major advances in ocean instrumentation by 
fostering new sensor technologies aimed at characterizing both the oceanic response to 
deoxygenation and the processes that promote or mitigate change. Although oxygen 
sensor technologies have improved over recent years, further advances in sensitivity and 
stability are required. Moreover, new sensor methodologies (e.g., those based on 
membrane-inlet mass spectrometry and/or precision barometry) aimed at characterizing 
the solution state of other gases (e.g., Ar and N2) in near-surface waters have potential for 
diagnosing details of air-sea oxygen exchange at a level useful for establishing regional 
mass balance constraints on ventilation and biological production.  Advances in infrared 
and electrode technology could also enable us to enhance observations of nitrous oxide 
production and denitrification in hypoxic and suboxic zones underlying high production 
regions. Molecular and physiological technology is now expanding rapidly and soon will 
include development of indicators of O2-stress or adaptation to low-O2 environments. 
 
Our capacity to predict and address biotic responses to oxygen changes requires 
knowledge of animal exposures to oxygen and their tolerances. Due largely to 
inaccessibility, such information is scarce for deep-margin and open-ocean biota. 
Improved imaging through optical, acoustic, or satellite-based tagging approaches can 
enhance understanding of animal distributions, behavior, size structure, and diversity in 
relation to oxygen level and it variability over time.  Integration of tools—such as time-
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lapse video cameras, optical plankton recorders, and hydroacoustic backscatter signals—
with new technologies in autonomous vertical profiling or Lagrangian drifters and long-
duration underwater gliders has great potential for mapping the distribution of organisms 
within oxygen minima zones.  Such characterizations are critical, since oxygen minima 
function as strong barriers to some species and refuge to others, with interfaces and 
transition areas having heightened biotic activity (Levin, 2003; Levin et al., 2009). 
 
A critical need in oceanographic instrumentation is access to biological rate 
measurements.  Indeed, despite the importance of aerobic respiration to the overall 
oxygen budget in the oceans, measurements of respiration are sparse and based primarily 
on methods and technologies from the early 20th century.  Guided by basic scientific 
principles of gas exchange, heat production, and biologically altered redox reactions, 
there exists a possibility to develop novel instrumentation to access real-time rates of 
oxygen consumption, nitrous oxide production, and other critical microbial metabolic 
processes in situ. 
 
Changes in ocean oxygenation are often accompanied by changes and interactions 
involving temperature, pH, salinity, nutrient levels, and inorganic compounds. These 
physical and chemical interactions alter key physiological processes in complex ways 
that are not currently well understood. Experiments that manipulate multiple 
environmental factors in concert, not individually, will elucidate how changes in modern 
ocean environments alter organismal survival and physiology and also inform 
paleophysiological patterns. Experiments that document differences in physiological 
tolerances of representatives from various taxonomic groups and from areas differing in 
oxygen content will indicate which organisms are acutely vulnerable to deoxygenation 
and other environmental change. Multi-generation laboratory experiments can monitor 
genetic responses to altered oxygen, temperature, and pH levels and thus elucidate the 
potential for organisms to adapt rapidly to oxygen change. A strategic search for 
molecular, morphological, physiological, geochemical, or ecosystem-level indicators of 
exposure to hypoxia is needed to track current or past changes. Observations in 
environments with oxygen near biotic thresholds can clarify how deoxygenation alters 
community composition, species interactions (predation, competition, symbiosis), as well 
as biologically driven geochemical feedbacks that are critical to maintaining an oceanic 
environment that is sustainable for human exploitation.	
  
	
  
To	
   better	
   understand	
   the	
   feedbacks	
   between	
   climatic	
   changes	
   and	
   ocean	
   oxygen	
  
concentration	
   will	
   require	
   long	
   term	
   ocean	
   observing	
   networks,	
   models,	
   and	
  
analyses	
  of	
  historical	
  data.	
  	
  To	
  this	
  end,	
  the	
  Ocean	
  Observing	
  Network,	
  with	
  its	
  focus	
  
on	
   in	
  situ	
  sensors	
  on	
  gliders	
  and	
  mooring	
   	
  (Figure	
  6),	
  and	
  remotely	
  sensed	
  data	
  of	
  
upper	
  ocean	
  phenomena	
  including	
  color,	
  sea	
  surface	
  temperature,	
  wind	
  speed,	
  and	
  
sea	
   surface	
   height,	
  will	
   provide	
   an	
   invaluable	
   set	
   of	
   data	
   for	
   the	
   coming	
   decades.	
  	
  
The	
   resulting	
   time	
   series	
   of	
   ocean	
   oxygen	
   and	
   physical,	
   chemical	
   and	
   biological	
  
phenomenon	
   requires	
   interagency	
   cooperation	
   and	
   commitment	
   to	
   this	
   critical	
  
issue	
  facing	
  the	
  health	
  of	
  the	
  oceans.	
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Appendix	
  A	
  –	
  Workshop	
  Agenda	
  
	
  
Wed.,	
  March	
  31	
  
0800	
  –	
  0845	
   Welcome,	
  introductions,	
  and	
  charge	
  to	
  the	
  workshop	
  
	
   	
   Pete	
  Worden,	
  Ames	
  Center	
  Director	
  
	
   	
   Paul	
  Falkowski,	
  Science	
  Organizing	
  Committee	
  Chair	
  
	
   	
   Carl	
  Pilcher,	
  NASA	
  Astrobiology	
  Institute	
  Director	
  
	
  
Session	
  1:	
  Processes	
  
Chair:	
  Steve	
  Hipskind,	
  Ames	
  Research	
  Center	
  
Rapporteur:	
  Steve	
  Emerson,	
  Univ.	
  Washington	
  
	
  
0845	
  –	
  0930	
   Bill	
  Jenkins	
  (WHOI)	
  -­‐-­‐	
  How	
  the	
  Ocean	
  Ventilates	
  
0930	
  –	
  1015	
   Lynne	
  Talley	
  (SIO)	
  -­‐-­‐	
  Climate	
  Change	
  and	
  Ventilation	
  Processes	
  
	
  
1015	
  	
  -­‐	
  1045	
   Break	
  	
  
	
  
Session	
  2:	
  The	
  Phanerozoic	
  
Chair:	
  Jeff	
  Kiehl,	
  National	
  Center	
  for	
  Atmospheric	
  Research	
  
Rapporteur:	
  Lee	
  Kump,	
  Pennsylvania	
  State	
  University	
  
	
  
1045	
  –	
  1130	
   Tim	
  Lyons	
  (UCR)	
  -­‐-­‐	
  Geochemical	
  Evidence	
  of	
  Ocean	
  Anoxic	
  Events	
  
1130	
  –	
  1200	
   Ellen	
  Thomas	
  (Yale)	
  –	
  PETM	
  Ocean	
  Oxygen	
  -­	
  Biogeochemical	
  
Proxies	
  
	
  
1200	
  –	
  1300	
   Lunch	
  
	
  
Session	
  3:	
  Climate	
  Effects	
  
Chair:	
  Paul	
  Falkowski,	
  Rutgers	
  University	
  
Rapporteur:	
  Roger	
  Summons,	
  MIT	
  
	
  
1300	
  –	
  1330	
   Tom	
  Algeo	
  (U.	
  Cinn.)	
  –	
  The	
  Pleistocene	
  and	
  Ocean	
  Oxygen	
  Content	
  
1330	
  –	
  	
  1400	
   Steve	
  Emerson	
  (U.	
  Wash.)	
  -­‐-­‐	
  Evidence	
  of	
  Modern	
  Ocean	
  
Deoxygenation	
  
1400	
  –	
  1430	
   Curtis	
  Deutsch	
  (UCLA)	
  -­‐-­‐	
  Biogeochemical	
  Feedbacks	
  between	
  
Climate	
  and	
  Ocean	
  Oxygen	
  Content	
  
1430	
  –	
  1500	
   Burke	
  Hales	
  (Oregon	
  State)	
  -­‐-­‐	
  Processes	
  Controlling	
  Oxygen	
  
Minimum	
  Zones	
  in	
  the	
  Modern	
  Ocean	
  
	
  
1500	
  -­‐-­‐	
  1530	
   Break	
  
	
  
Session	
  4:	
  Biological	
  Effects	
  and	
  Remote	
  Sensing	
  
Chair:	
  Ricardo	
  Letelier	
  
Rapporteur:	
  Ray	
  Huey,	
  Univ.	
  Washington	
  
	
  
1530	
  –	
  1600	
   Lisa	
  Levin	
  (SIO)	
  -­‐-­‐	
  Ocean	
  Deoxygenation:	
  Responses	
  of	
  Metazoans	
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1600	
  –	
  1630	
   Ray	
  Huey	
  (U.	
  Wash.)	
  -­‐-­‐	
  Respiratory	
  Physiology	
  
1630	
  –	
  1700	
   Lou	
  Codispoti	
  (U.	
  Maryland)	
  -­‐-­‐	
  Interactions	
  between	
  Oxygen	
  and	
  
the	
  Nitrogen	
  Cycle	
  
1700	
  –	
  1730	
   Norm	
  Nelson	
  (UC	
  Santa	
  Barbara)	
  –	
  Chromophoric	
  Dissolved	
  
Organic	
  Matter	
  as	
  a	
  Proxy	
  for	
  Dissolved	
  Oxygen	
  
	
  
1730	
  –	
  Adjourn	
  	
  
	
  
Thurs.,	
  April	
  1	
  
	
  
0830	
  –	
  0930	
   Reports	
  from	
  rapporteurs	
  
0930	
  –	
  1000	
   General	
  discussion	
  and	
  breakout	
  group	
  
structure/participants/questions	
  
1000	
  –	
  1015	
   Break	
  
1015	
  –	
  1130	
   Breakout	
  sessions	
  
1135	
  –	
  1215	
   Reconvene	
  in	
  plenary	
  –	
  brief	
  reports	
  from	
  breakout	
  chairs	
  –	
  identify	
  
key	
  questions	
  and	
  process	
  for	
  rest	
  of	
  day	
  
1215	
  –	
  1315	
   lunch	
  
1315	
  –	
  1530	
   Breakout	
  sessions	
  
1530	
  –	
  1600	
   Each	
  participant	
  writes	
  ~2	
  paragraphs	
  about	
  their	
  key	
  issues,	
  
questions,	
  priorities,	
  etc.	
  
1600	
  –	
  1730	
   Reconvene	
  in	
  plenary	
  –	
  reports	
  from	
  breakouts	
  to	
  plenary	
  –	
  prioritize	
  
key	
  issues	
  and	
  areas	
  that	
  require	
  research	
  investments.	
  
1730	
   Adjourn	
  
	
  
Friday,	
  April	
  2	
  
	
  	
  
0830	
  –	
  1200	
   The	
  speakers	
  from	
  Wednesday	
  and	
  4	
  rapporteurs	
  remain	
  to	
  develop	
  
~7	
  to	
  10	
  page	
  White	
  Paper	
  (with	
  appendices,	
  as	
  appropriate).	
  	
  Other	
  participants	
  
are	
  free	
  to	
  leave.	
  	
  White	
  Paper	
  should	
  identify	
  the	
  basic	
  issues	
  of	
  controls	
  of	
  oxygen	
  
in	
  the	
  ocean	
  and	
  its	
  effect	
  on	
  life	
  in	
  the	
  geological	
  past,	
  at	
  present,	
  and	
  in	
  the	
  future	
  
(time	
  scale	
  to	
  be	
  defined	
  by	
  participants),	
  as	
  well	
  as	
  remote	
  sensing	
  of	
  ocean	
  oxygen	
  
content	
  -­‐	
  proxies	
  and	
  models.	
  
1200	
  –	
  1300	
   lunch	
  	
  
1300	
  –	
  end	
  of	
  meeting	
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Appendix B – Science Organizing Committee 
 
 
Paul	
  Falkowski,	
  Chair	
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  University	
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   Univ.	
  Massachusetts,	
  Dartmouth 
Ariel	
  Anbar	
   Arizona	
  State	
  University 
Steve	
  Emerson	
   Univ.	
  Washington	
  
Mick	
  Follows	
   	
   	
   	
   Massachusetts	
  Institute	
  of	
  Technology 
Ray	
  Huey	
   	
   	
   	
   Univ.	
  Washington	
  
Ralph	
  Keeling	
  	
   	
   	
   Scripps	
  Institution	
  of	
  Oceanography,	
  UCSD  
Dennis	
  Kent	
   	
   	
   	
   Rutgers	
  University 
Jeff	
  Kiehl	
   	
   	
   	
   National	
  Center	
  for	
  Atmospheric	
  Research 
Lee	
  Kump	
   	
   	
   	
   Pennsylvania	
  State	
  University 
Ricardo	
  Letelier	
   	
   	
   Oregon	
  State	
  University 
Tim	
  Lyons	
   	
   	
   	
   University	
  of	
  California,	
  Riverside 
Roger	
  Summons	
  	
   	
   	
   Massachusetts	
  Institute	
  of	
  Technology 
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     Appendix C – Workshop Participants 
 
Algeo Tom U. Cinncinatti 
Altabet Mark U. Mass. Dartmouth 
Anbar Ariel ASU 
Behrenfeld Mike Oregon State 
Bristow Laura U. Mass. Dart. 
Codispoti Lou U. Maryland 
Deutsch Curtis UCLA 
Emerson Steve U. Washington 
Falkowski Paul Rutgers 
Galbraith Eric McGill 

Gnanadesikan Anand 
NOAA GFDL 
Princeton 

Goolish Edward NASA Ames/NAI 
Hales Burke Oregon State 
Hayes John Berkeley 
Hipskind Steve NASA Ames 
Huey Ray U. Washington 
Jenkins Bill WHOI 
Jewett Libby NOAA 
Kendall Brian ASU 
Kiehl Jeff NCAR 
Kirven-Brooks Melissa NASA Ames/NAI 
Kryc Kelly Moore Foundation 
Kump Lee Penn State 
Letelier Ricardo Oregon State 
Levin Lisa SIO 
Lipschultz Fred NASA HQ 
Lyons Tim UC Riverside 
Manizza Manfredi SIO 
Meyer Katja Stanford 
Nelson Norm UCSB 
Pilcher Carl NASA Ames/NAI 
Planavsky Noah UC Riverside 
Reinhard Chris UC Riverside 
Robinson Rebecca URI 
Romaniello Steve ASU 
Rothschild Lynn NASA Ames 
Schmittner Andreas OSU 
Scofield Christine NASA Ames 
Sepulveda Julio MIT 
Summons Roger MIT 
Sundquist Eric USGS/Woods Hole 
Talley Lynne SIO 
Thomas Ellen Yale 
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van de Schootbrugge Bas 
Goethe 
Univ/Frankfurt 

Voytek Mary NASA HQ 

Whitney Frank 
Fisheries/Oceans, 
Canada 

Worden Pete NASA Ames 
Zornetzer Steve NASA Ames 

 
	
  
	
  
	
  


