3 items with the tag “rrna

  • Ribosome Palentology
    NAI 2013 Georgia Institute of Technology Annual Report

    The origins of the translation machinery remain imprinted in the extant ribosome. The conformations of ribosomal RNA and protein components can be seen to change over time indicating clear molecular fossils. We are establishing methodology to determine chronologies of ancient ribosomal evolution. It is hypothesized that substantial, though necessarily incomplete evidence, relating to the origins and early development of the translation machinery and its relation to other core cellular processes continues to exist in the primary sequences, three-dimensional folding and functional interactions of the various macromolecules involved in the modern versions of these processes. To this end, we are using ribosomal paleontology to determine the relative age of various ribosomal components and subsystems and thereby develop timelines for the history of the ribosome as a whole as well as various sub processes such as initiation, termination, translocation etc. The results of these studies will interface ribosomal history with other key relating to the origin of life including the emergence of the genetic code, the origin of chirality, and the nature of the last common ancestor. We have also been developing new tools of ribosomal paleontology, to visualize the changes, and to determine timelines for ribosomal origins.

    ROADMAP OBJECTIVES: 3.2
  • Resurrection of an Ancestral Peptidyl Transferase
    NAI 2013 Georgia Institute of Technology Annual Report

    Ancient components of the ribosome, inferred from a consensus of previous work, were constructed in silico, in vitro, and in vivo. The resulting model of the ancestral ribosome incorporates about 20% of the extant 23S rRNA and fragments of four ribosomal proteins. We confirmed that the ancestral rRNA can: (i) assume canonical 23S rRNA-like secondary structure, (ii) assume canonical tertiary structure, and (iii) form native complexes with ribosomal protein fragments. We call the assembled a-RNA and rPeptide fragments the aPTC. We are currently focusing on characterizing the catalytic activity of the a-PTC.

    ROADMAP OBJECTIVES: 3.2 4.2
  • RiboVision: Visualization and Analysis of Ribosomes
    NAI 2013 Georgia Institute of Technology Annual Report

    Ribosomes present special problems and opportunities related to visualization and analysis because they are exceeding complex and information-rich. Many structures have determined at near-atomic resolution, a large number of rRNAs have been sequenced, and each is a large macromolecular assembly with many components and highly complex function. We are devising visualization and analysis methods in analogy with Google Maps, but applied to the ribosome. We have used these tools to make important discoveries relevant to ribosomal structure, function and origins.

    ROADMAP OBJECTIVES: 3.2 4.2