2 items with the tag “rb-sr isotopes

  • Laser Ablation-Electron Impact Ionization-Miniature Mass Spectrometer (LA-EI-MMS) for In-Situ Geochronology and Hydrology of Martian Rocks
    NAI 2009 University of Wisconsin Annual Report

    Geochronologic investigations of Mars have focused exclusively on Martian meteorites and crater counting the Martian surface to infer relative ages of different Martian surfaces. Our goal is to develop geochronologic methods that can be applied using a miniature mass spectrometer capable of being deployed on a Mars rover to perform chemical and Rb-Sr isotope analysis on samples collected from the Martian surface. In parallel with instrument development we are conducting terrestrial studies of Martian analog materials and SNC meteorites to develop standards for the miniature mass spectrometer and methodologies for interpretation of data that may be collected using this miniature mass spectrometer.

    ROADMAP OBJECTIVES: 2.1
  • Project 4B: Development of Laser Ablation-Miniature Mass Spectrometer (LA-MMS) for Geochronology and Geochemistry of Martian Rocks
    NAI 2010 University of Wisconsin Annual Report

    Our goal is to develop a breadboard instrument for isotopic analysis of solids and age dating of different rocks based on Rb-Sr radiometric technique. This is based on the methodology of laser ablation-miniature mass spectrometer (LA-MMS). It performs the mass spectral and isotopic measurements of the laser ablated vapors from solids using the miniature mass spectrometer (MMS) and the modified CCD based array detector for the direct and simultaneous measurement of different mass ions. The approach has been demonstrated at the Jet Propulsion Laboratory by the chemical and isotopic analysis of gas and solid samples. The breadboard version of the above instrument can be miniaturized to meet the requirements of a rover based spacecraft instrument for applications to various NASA missions.

    ROADMAP OBJECTIVES: 2.1 7.2