4 items with the tag “modern analog

  • Biosignatures in Relevant Microbial Ecosystems
    NAI 2009 Pennsylvania State University Annual Report

    In this project, PSARC team members explore the isotope ratios, gene sequences, minerals, organic biomarkers, and other biosignatures in modern ecosystems that function as analogs for early earth ecosystems, or for life that may be present elsewhere in the solar system and beyond. Many of these environments are “extreme” by human standards and/or have conditions that are at the limit for microbial life on Earth.

    ROADMAP OBJECTIVES: 4.1 4.3 5.1 5.2 5.3 6.1 7.1 7.2
  • Biosignatures in Relevant Microbial Ecosystems
    NAI 2010 Pennsylvania State University Annual Report

    In this project, PSARC team members explore the isotope ratios, gene sequences, minerals, organic molecules, and other signatures of life in modern environments that have important similarities with early earth conditions, or with life that may be present elsewhere in the solar system and beyond. Many of these environments are “extreme” by human standards and/or have conditions that are at the limit for microbial life on Earth.

    ROADMAP OBJECTIVES: 4.1 4.3 5.1 5.2 5.3 6.1 7.1 7.2
  • Biosignatures in Relevant Microbial Ecosystems
    NAI 2011 Pennsylvania State University Annual Report

    In this project, PSARC team members explore the isotope ratios, gene sequences, minerals, organic molecules, and other signatures of life in modern environments that have important similarities with early earth conditions, or with life that may be present elsewhere in the solar system and beyond. Many of these environments are “extreme” by human standards and/or have conditions that are at the limit for microbial life on Earth.

    ROADMAP OBJECTIVES: 4.1 4.3 5.1 5.2 5.3 6.1 7.1 7.2
  • Biosignatures in Relevant Microbial Ecosystems
    NAI 2012 Pennsylvania State University Annual Report

    PSARC is investigating microbial life in some of Earth’s most mission-relevant modern ecosystems. These environments include the extremely salty Dead Sea, the impact-fractured crust of the Chesapeake Bay impact structure, methane seeps on the ocean floor, deep ice in the Greenland ice sheet, and oxygen-free waters including deep subsurface groundwater. We target environments that, when studied, provide fundamental information that can serve as the basis for future solar system exploration. Combining our expertise in molecular biology, geochemistry, microbiology, and metagenomics, and in collaboration with some of the planet’s most extreme explorers, we are deciphering the microbiology, fossilization processes, and recoverable biosignatures from these mission-relevant environments.

    ROADMAP OBJECTIVES: 4.1 4.3 5.1 5.2 5.3 6.1 7.1 7.2