3 items with the tag “mars exploration

  • Life Underground
    NAI 2013 University of Southern California Annual Report

    Our multidisciplinary team from USC, Caltech, JPL, DRI, and RPI is developing and employing field, laboratory, and modeling approaches aimed at detecting and characterizing microbial life in the subsurface—the intraterrestrials. We posit that if life exists, or ever existed, on Mars or other planetary body in our solar system, evidence thereof would most likely be found in the subsurface. This study takes advantage of unique opportunities to explore the subsurface ecosystems on Earth through boreholes, mine shafts, and deeply-sourced springs. Access to the subsurface, both continental and marine, and broad characterization of the rocks, fluids, and microbial inhabitants is central to this study. Our focused research themes require subsurface samples for laboratory and in situ experiments. Specifically, we seek to carry out in situ life detection and characterization experiments, employ numerous novel and traditional techniques to culture heretofore unknown intraterrestrial archaea and bacteria, and incorporate new and existing data into regional and global metabolic energy models.

    ROADMAP OBJECTIVES: 2.1 2.2 3.1 3.3 4.1 5.1 5.2 5.3 6.1 6.2 7.2
  • Habitability of Water-Rich Environments - Task 4 - Evaluate the Habitability of Ancient Aqueous Solutions on Mars
    NAI 2014 Arizona State University Annual Report

    Goals are to constrain conditions of Mars habitability and preservation potential through in situ studies with MER rover data, the MSL Curiosity rover operating at Gale Crater, and terrestrial analog studies.

    ROADMAP OBJECTIVES: 2.1
  • Life Underground
    NAI 2014 University of Southern California Annual Report

    Our multi-disciplinary team from USC, Caltech, JPL, DRI, RPI, and now also Northwestern is developing and employing field, laboratory, and modeling approaches aimed at detecting and characterizing microbial life in the subsurface—the intraterrestrials. We posit that if life exists, or ever existed, on Mars or other planetary body in our solar system, evidence thereof would most likely be found in the subsurface. This study takes advantage of unique opportunities to explore the subsurface ecosystems on Earth through boreholes, mine shafts, sediment coring, marine vents and seeps, and deeply-sourced springs. Access to the subsurface—both continental and marine—and broad characterization of the rocks, fluids, and microbial inhabitants is central to this study. Our focused research themes require subsurface samples for laboratory and in situ experiments. Specifically, we are carrying out in situ life detection, culturing and isolation of heretofore unknown intraterrestrial archaea and bacteria using numerous novel and traditional techniques, and incorporating new and existing data into regional and global metabolic energy models.

    ROADMAP OBJECTIVES: 2.1 2.2 3.1 3.3 4.1 5.1 5.2 5.3 6.1 6.2 7.2