4 items with the tag “exoplanets

  • Star Formation and the Variable Young Stellar Objects Survey
    NAI 2013 University of Hawaii, Manoa Annual Report

    Planets form in circumstellar disks around young stars in the early stage of star formation and the physical, chemical, and kinematic properties of young stellar objects set the initial conditions of planet formation and affect subsequent evolution of protostars and planets. In this project we perform optical and submillimeter observations to study young stellar objects. In the optical wave-lengths, the Variable Young Stellar Objects Survey (VYSOS) aims at surveying all the major star forming regions visible from Hawaii for variable young stars. A small survey telescope provides shallow observations over a large area of the sky, and a larger telescope allows deeper more detailed observations of smaller regions. VYSOS observations are done robotically. In the submillimeter wave-lengths, high resolution interferometric observations combined with radiative transfer modeling reveal structures of protostellar envelopes and resolve the embedded disks. We also study the spatial distributions of a deuterated molecule relative to its hydrogenbearing counterpart in the envelopes and compare to chemical models. Lastly, brown dwarf triple systems are studied via numerical simulations, and the results show that when such triple systems break up during the protostellar phase, a common result is the formation of a brown dwarf binary.

    ROADMAP OBJECTIVES: 1.1
  • Habitability, Biosignatures, and Intelligence
    NAI 2013 University of Hawaii, Manoa Annual Report

    Understanding the nature and distribution of habitable environments in the Universe is one of the primary goals of astrobiology. Based on the only example of life we know, we have devel-oped various concepts to predict, detect, and investigate habitability, biosignatures and intelli-gence occurrence in the near-solar environment. In particular, we are searching for water vapor in atmospheres of extrasolar planets and protoplanets, developing techniques for remote detec-tion of photosynthetic organisms on other planets, have detected a possible bio-chemistry sig-nature in Martian clays contemporary with early life on Earth, developed a comprehensive methodology and an interactive website for calculating habitable zones in binary stellar systems, expanded on definitions of habitable zones in the Milky way Galaxy, and proposed a novel ap-proach for searching extraterrestrial intelligence.

    ROADMAP OBJECTIVES: 1.1 1.2 2.2 3.1 3.2 4.1 4.2 6.2 7.1 7.2
  • Habitable Planet Formation and Orbital Dynamical Effects on Planetary Habitability
    NAI 2013 VPL at University of Washington Annual Report

    The VPL explores how variations in orbital properties affects the growth, evolution and habitability of planets. The formation process must deliver the appropriate ingredients for life to a planet in order for it to become habitable. After planets form, interactions between a habitable planet at its host star and/or other planets in the system can change planetary properties, possibly rendering the planet uninhabitable. The VPL models these processes through computer models in order to understand how the Earth became and remains habitable, as well as examining and predicting habitability on planets outside the Solar System.

    ROADMAP OBJECTIVES: 1.1 1.2 3.1 4.3
  • Stellar Effects on Planetary Habitability and the Limits of the Habitable Zone
    NAI 2013 VPL at University of Washington Annual Report

    In this task VPL Team members explore the interactions between a planet and its parent star and how these interactions affect whether or not the planet can support life. These interactions can be radiative, with light from the star affecting the planet’s climate, or UV from stellar flares affecting the radiation environment at the planet’s surface. Or they interactions can be gravitational, with the star periodically deforming planets on elliptical orbits and thereby transferring energy into the planet. Both radiative and gravitational effects can input too much heat into a planet’s environment and cause it to lose the ability to maintain liquid water at the surface. Research this year included looking at the limits of the habitable zone with new calculations, exploring how gravitational tidal energy could cause a planet to lose its ocean, and understanding the effects that tidal deformation and incoming stellar radiation would have on the habitability of exomoons.

    ROADMAP OBJECTIVES: 1.1 1.2 4.1