3 items with the tag “exoplanet

  • Earth as an Extrasolar Planet
    NAI 2013 VPL at University of Washington Annual Report

    Earth is our only example of a habitable planet, or a planet capable of maintaining liquid water on its surface. As a result, Earth serves as the archetypal habitable world in conceptual studies of future exoplanet characterization missions, or in studies of techniques for the remote characterization of potentially habitable exoplanets. We seek to accurately simulate the time-, phase-, and wavelength-dependent appearance of the Pale Blue Dot, and to use these models to understand how to best recognize and characterize potentially Earth-like exoplanets.

    ROADMAP OBJECTIVES: 1.2 7.2
  • Earth as an Extrasolar Planet
    NAI 2014 VPL at University of Washington Annual Report

    Earth will always be our best example of a habitable world. By studying Earth as a single point of light, which harkens back to the famous Pale Blue Dot image of our planet, we can develop ideas and techniques for characterizing other potentially habitable planets around distant stars. These techniques focus on remotely measuring or detecting fundamental planetary and atmospheric properties—-composition, total atmospheric mass, temperature, and the presence of a surface ocean.

    ROADMAP OBJECTIVES: 1.2 7.2
  • Solar System Analogs for Exoplanet Observations
    NAI 2014 VPL at University of Washington Annual Report

    The worlds of our Solar System represent only a fraction of the planetary diversity that likely exists in our Universe. Nevertheless, by studying and characterizing Solar System worlds, we can develop general models that can be applied and tested on exoplanets. Furthermore, by observing planets in the Solar System and studying these data within the context of exoplanet observations, we can provide new context and understanding to exoplanet data. Work in this area this past year includes observations of Titan as seen by Cassini, as an analog for exoplanet observations of hazy worlds; mapping observations of Venus below its cloud deck as an analog for processes and observations of hazy worlds; and the study of multiple atmospheres in the Solar System to understand the basic processes that control their atmospheric temperature structure.

    ROADMAP OBJECTIVES: 1.2 7.2