1 item with the tag “atmospheric evolution

  • Climates and Evolution of Extrasolar Terrestrial Planets
    NAI 2013 VPL at University of Washington Annual Report

    Planetary climate results from the interplay of a large number of different physical processes, including radiative heating and cooling, advection and dynamics, latent heating and cloud effects, atmosphere-interior interactions, and the presence of life. Atmospheres and climate then evolve through time due to interplay between these processes and longer-term effects, such as atmospheric escape, orbital evolution, and other dynamical interactions. Since planetary climate determines surface habitability, we can better understand how planets maintain habitability over long time periods by studying and modeling the large network of interactions that determine the atmospheric state of a planet and how it changes through time.