4 items with the tag “astrobiology

  • Infrared Detections of Hypervolatiles in Distant Comets - Implications for Chemical Taxonomy
    NAI 2013 NASA Goddard Space Flight Center Annual Report

    Most IR taxonomic databases of comets concentrate on objects at heliocentric distances within 2 AU, where water (the main volatile species in comets) is active. In 2012, we found that we could quantify hypervolatiles (such as carbon monoxide and methane) using infrared facilities in comets at distances even beyond Jupiter, where water ice cannot sublime efficiently. This project has focused on a new approach to understand the activity of distant comets using infrared facilities, as well as on the role of hypervolatiles in the onset of activity and the implications for current taxonomic databases of primary volatiles.

    ROADMAP OBJECTIVES: 1.1 3.1 3.2 7.1
  • Life on the Edge: Astrobiology Summer Learning Program
    NAI 2013 Georgia Institute of Technology Annual Report

    The Ribo Evo Center changed their focus this year and hosted 10 high school students and undergraduates in research labs over the summer. These students prepared posters and presented them at the 2013 so Max meeting in Atlanta. Currently, RiboEvo members are mentoring this cohort of high school students for their local science fair.

  • Titan as a Prebiotic Chemical System - Willacy
    NAI 2014 NASA Jet Propulsion Laboratory - Titan Annual Report

    To develop a comprehensive model of the chemistry in Titan’s atmosphere including condensation of molecules onto grains and sublimation back to the gas, and exchange between the atmosphere and surface.

  • The Variability of Carbon Monoxide Abundances Among Oort Cloud Comets
    NAI 2014 NASA Goddard Space Flight Center Annual Report

    Direct observations of neutral CO in multiple wavelength regimes (radio, infrared and ultraviolet) have established a wide range for measured CO abundances (relative to water), ranging from a few tenths of a percent to ~30%. But the largest complexity when interpreting measurements of CO stems from its competing roles as a primary (parent) vs product species. For instance, CO is a principal product of CO2 dissociation, so comets rich in CO2 should also reveal a significant production rate for CO — this product CO is extended and its detection is strongly dependent on the instrumental field-of-view (FOV). Prior to 2013, only six comets within 2.5 AU of the Sun (where both H2O and CO are active primary volatiles) were identified as being enriched in native CO. During late 2013, we confirmed a relatively high abundance of CO in C/2013 R1 (Lovejoy; hereafter C/2013 R1), supporting the existence of a so-far sparse (yet growing) fraction of CO-rich comets.

    ROADMAP OBJECTIVES: 1.1 3.1 3.2 7.1