Notice: This is an archived and unmaintained page. For current information, please browse

Formation of Icy Planetesimals in the Primitive Nebula: Implications for the Composition of Gas Giant Planets, Satellites, and Comets

Presenter: Olivier Mousis, Université de Franche-Comté
When: March 5, 2010 9AM PST

Formation scenarios of the solar nebula invoke two main reservoirs of water ice that may have taken part concurrently into the production of solids. In the first reservoir, which is located within the heliocentric distance of 30 AU, water ice infalling from the Interstellar Medium (ISM) initially vaporized into the hot inner part of the disk and condensed in its crystalline form during the cooling of the solar nebula (Kouchi et al. 1994; Chick & Cassen 1997). The second reservoir, located at larger heliocentric distances, is composed of water ice originating from ISM that did not suffer from vaporization when entering into the disk. In this reservoir, water ice remained mainly in its amorphous form. From these considerations, we discuss here the trapping conditions of volatiles in planetesimals produced within the outer solar nebula and their implications for the origin and composition of gas giant planets, their surrounding satellite systems and comets. In particular, we show that the formation of icy planetesimals agglomerated from clathrate hydrates in the solar nebula can explain in a consistent manner the volatiles enrichments measured at Jupiter and Saturn, as well as the composition of Titan’s atmosphere.

Space Telescope Science Institute Webcast Series

  • Johns Hopkins University and the Space Telescope Science Institute present live and on-demand webcasts related to science, technology, and business to the scientific community and the public at-large. Live webcasts, production services, and the webcast archive are managed by the Information Technology Services division of the Space Telescope Science Institute.
  • Subscribe to this series