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ABSTRACT
Evaluation of hypotheses that relate environmental to evolutionary change across the 

Ediacaran-Cambrian transition has been hampered by a dearth of sections that preserve 
both the last appearance of Ediacaran body fossils and the first appearance of Treptich-
nus pedum within carbonate-rich strata suitable for chemostratigraphic studies. Here, we 
report two new exceptionally preserved latest Ediacaran fossil assemblages from the Deep 
Spring Formation at Mount Dunfee, Nevada (USA). Further, we report these occurrences 
in a high-resolution carbon isotope chemostratigraphic framework, permitting correlation 
on a regional and global scale. The lower of the two horizons, at the base of the Deep Spring 
Formation, hosts a body fossil assemblage that includes Gaojiashania, other vermiform body 
fossils, and possible Wutubus annularis interbedded with Cloudina shell beds. The upper of 
the two fossil horizons, in the Esmeralda Member of the Deep Spring Formation, contains 
Conotubus and occurs within the basal Cambrian negative carbon isotope excursion, establish-
ing it as the youngest Ediacaran fossil assemblage discovered to date. This is the first report 
of Gaojiashania, Conotubus, and Wutubus in Laurentia, extending the known stratigraphic 
ranges and biogeographic distributions of these taxa to a global scale. These data refine the 
relative ages of defining characteristics of the Ediacaran-Cambrian boundary and confirm 
that a large perturbation to the carbon cycle and surface ocean conditions coincided with 
the extinction of Ediacaran organisms.

INTRODUCTION
The first major radiation of macroscopic 

multicellular life occurred during the Edia-
caran Period. Although Ediacaran organisms 
likely represent a diverse assemblage of eukary-
otic groups—including stem- and crown-group 
metazoans, algae, and extinct clades with no 
modern representatives—they are commonly 
collectively referred to as the “Ediacara biota” 
(Xiao and Laflamme, 2009; Erwin et al., 2011; 
Brasier et al., 2012). Across the Ediacaran-Cam-
brian transition, both macroscopic soft-bodied 
Ediacara biota and enigmatic, tubular metazoan 
biota (Cai et al., 2013; Tarhan et al., 2014) disap-
pear from the fossil record. Although it has been 
suggested that the apparent extinction of Edia-
caran organisms is a taphonomic artifact (Geh-
ling, 1991), the pattern of biological turnover 
appears to be globally reproducible through a 
wide range of sedimentary facies (Buatois et al., 
2014). There are a few isolated reports of pur-
ported “Cambrian survivors” of Ediacaran taxa 
(Hagadorn et al., 2000; Jensen et al., 1998), but 
more taphonomic and taxonomic studies are nec-
essary to demonstrate that they are in fact true 
Ediacaran holdovers (Laflamme et al., 2013).

Two general classes of hypotheses have been 
proposed to explain the disappearance of the Edi-
acaran organisms: (1) an extreme perturbation to 

surface environments and global geochemical 
cycles marked by a carbon isotope (d13C) excur-
sion triggered an extinction by generating abiotic 
stressors (e.g., Knoll and Carroll, 1999; Amthor 
et al., 2003), and (2) a growing metazoan com-
munity more gradually outcompeted Ediacaran 
soft-bodied non-metazoan taxa through ecologi-
cal engineering and gradual biotic replacement 
(e.g., Erwin and Tweedt, 2012; Darroch et al., 
2015). Calibrating the relative and absolute tim-
ing of changes in life and environment at this 
interval—the necessary framework to test these 
hypotheses—has been hindered by a lack of fos-
siliferous, carbonate-rich sections in which both 
paleontological and geochemical proxies can be 
integrated. Here we present new geological map-
ping, stratigraphic sections, geochemical data, 
and two newly discovered assemblages of Edia-
caran body fossils from Mount Dunfee, Nevada 
(USA). These data allow us to directly relate the 
nadir of the multi-pronged basal Cambrian nega-
tive d13C excursion to the last appearance datum 
(LAD) of Ediacaran body fossils and the first 
appearance datum (FAD) of Treptichnus pedum, 
which defines the base of the Cambrian Period.

LITHOSTRATIGRAPHY
Ediacaran-Cambrian strata in the Great Basin 

of Nevada and California were deposited on the 

western margin of Laurentia (present coordi-
nates) during the rift-drift transition (Armin and 
Mayer, 1983; Stewart, 1970), with the strata at 
Mount Dunfee (Figs. 1A and 1B) representing 
one of the most distal, carbonate-dominated sec-
tions that is preserved. The Ediacaran to lower 
Cambrian Deep Spring Formation consists of 
three members: the Dunfee (lower), Esmeralda 
(middle), and Gold Point (upper) Members, 
which are also exposed in the White-Inyo Moun-
tains (Ahn et al., 2012; Nelson, 1962).

At Mount Dunfee, the contact between the 
Reed Dolomite and the overlying Deep Spring 
Formation has previously been placed at the 
transition from thickly bedded dolostone of the 
Reed Dolomite to distinctly bedded dolostone, 
limestone, and fine-grained siliciclastics of the 
Deep Spring Formation (Albers and Stewart, 
1972). Here, because this gradational contact 
coincides with an irregular dolomitization front 
and lateral facies change, we refer to the bedded 
orange and gray dolostone and limestone beds 
above the massive, structureless dolostone as the 

“Reed–Deep Spring transition beds.” At Mount 
Dunfee, these transition beds contain ooids, 
pisoids, oncoids, and shelly fossils in lenticu-
lar lag deposits (Gevirtzman and Mount, 1986).

We place the base of the Deep Spring Forma
tion at a regionally distinct and easily recogniz-
able sequence boundary (Fig. 1C). This sequence 
boundary is a sharp, karsted contact between 
a red, Fe-rich, glauconitic, peloidal limestone 
and a fine-grained siliciclastic facies (interbed-
ded shale, siltstone, and sandstone) that contains 
mud chips, mud cracks, and syneresis cracks. 
The rest of the Dunfee Member consists of 
mixed carbonate-siliciclastic deposits represent-
ing slope to shallow subtidal settings (Gevirtz-
man and Mount, 1986).

The contact between the Dunfee and Esmer-
alda Members is marked by a pink to gray 
recrystallized dolostone capped by a karstic dis-
solution surface that is sharply overlain by green 
shoreface sandstone with mud cracks, interfer-
ence ripples, and bed-planar trace fossils. The 
Esmeralda Member is 275–325 m thick and is 
composed of quartzitic and calcareous sandstone, 
stromatolitic and oolitic limestone, and minor 
siltstone and shale (Albers and Stewart, 1972).
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CHEMOSTRATIGRAPHY
Detailed geologic mapping of Miocene 

down-to-the-southwest shingled normal faults 
in the Mount Dunfee area (Fig. 1B) and corre-
lation of distinct marker beds enabled the con-
struction of a composite measured section and 
a high-resolution d13C chemostratigraphic curve 
(see the GSA Data Repository1) of the upper 
Reed Dolomite through the Esmeralda Member 

1 GSA Data Repository item 2016307, methods, 
measured sections, and carbon and oxygen data tables, 
is available online at www.geosociety.org/pubs/ft2016​
.htm, or on request from editing@geosociety.org.

of the Deep Spring Formation (Fig. 1C). At 
Mount Dunfee, the upper Reed Dolomite and 
lower Deep Spring Formation are characterized 
by a +3‰ to +4‰ d13C plateau (Fig. 1C). Above 
this interval, within the dolomitized and recrys-
tallized upper ~50 m of the Dunfee Member, 
there is a downturn in d13C values to -2‰. The 
previously documented basal Cambrian negative 
d13C excursion (Corsetti and Kaufman, 1994) 
was reproduced in the middle of the Esmeralda 
Member, but new high-resolution data reveal 
additional structure to the excursion (Fig. 1C). 
Conglomerate with tabular carbonate intraclasts 
and microbial horizons A and B (Oliver and 

Rowland, 2002) contain d13C values as low as 
-6.2‰. Above this, the d13C values rise to -3‰ 
to -2‰ before they decrease to -9.5‰.

BIOSTRATIGRAPHY
Small shelly fossils were previously reported 

from the upper Reed Dolomite and the lower 
Dunfee Member of the Deep Spring Formation 
(Gevirtzman and Mount, 1986; Signor et al., 
1987) and were later reinterpreted as Cloudina 
(Grant, 1990). In this study, shelly debris with 
circular cross-sections characteristic of Cloudina 
were discovered in the uppermost bed of the Dun-
fee Member, extending, in a chemostratigraphic 
and biostratigraphic context, the LAD of this 
Ediacaran index fossil (Fig. 1C). The algal fossil 
Elainabella deepspringensis occurs in brown to 
black siltstone above microbial horizon B and 
below microbial horizon C of the Esmeralda 
Member (Rowland and Rodriguez, 2014). The 
FAD of T. pedum occurs above the large negative 
d13C excursion, just a few meters below the top of 
the Esmeralda Member (Corsetti and Hagadorn, 
2003). Additionally, two new exceptionally pre-
served Ediacaran body fossil assemblages were 
discovered in the Deep Spring Formation and 
are described in detail below.

Fossil Assemblage in the Dunfee Member of 
the Deep Spring Formation

The older of the two body fossil assemblages 
reported here occurs in siltstone and sandstone 
beds in the lowermost Dunfee Member of the 
Deep Spring Formation (Fig. 1C). Cast and 
mold impressions of annulated tubular fossils, 
identified as Gaojiashania, were discovered on 
multiple bedding surfaces within a 5–10-m-thick 
interval of strata composed of interbedded green 
shale, micaceous brown to green siltstone, and 
micaceous fine- to medium-grained sandstone 
(Figs. 2A and 2B). The specimens are 1.5–10 cm 
in length and 3–13 mm in diameter. Other fossils 
found in this stratigraphic interval include cast 
and mold impressions of possible Wutubus annu-
laris (Fig. 2C), lightly pyritized compressions of 
smaller, tubular vermicular fossils with closed 
apices (Fig. 2D), and possible algal fossils. Part 
and counterpart slabs were collected for five 
Gaojiashania specimens. Some of the fossilifer-
ous horizons contain <1-cm-diameter subangular 
to rounded mud chips. Mud cracks, syneresis 
cracks, and hummocky cross-stratification are 
present both within and above the fossiliferous 
interval. Small (submillimeter- to millimeter-
scale) trace fossils, including Planolites, Ber-
gaueria-like traces, and rare traces resembling 
Scolicia and Neonereites, occur in this same 
interval (Gevirtzman and Mount, 1986). Body 
fossils described herein were recovered from 
three separate fault blocks around Mount Dunfee.

To date, all reports of Gaojiashania are from 
the late Ediacaran (ca. 551–541 Ma) Dengying 
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Figure 1. A: Locality map for Mount Dunfee, Nevada, USA (LA—Los Angeles, California; LV—
Las Vegas, Nevada). B: Geologic map of Mount Dunfee with locations of measured sections. 
Section E1513 is northwest of figured map area (Base: 37°21′1.42″N, 117°19′37.85″W). C: 
Composite measured section with biostratigraphy and d13C chemostratigraphy for the upper 
Reed Dolomite and Deep Spring Formation. Stratigraphic horizons of two new Ediacaran 
body fossil assemblages are marked with stars. DSF—Deep Spring Formation; VPDB—Vienna 
Peedee belemnite. vf-f ss—very fine to fine-grained sandstone;  m ss—medium-grained sand-
stone; c-vc ss—coarse to very coarse-grained sandstone; lm/ds—limestone and dolostone; 
congl—conglomerate.
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Formation (Cai et al., 2010; Lin et al., 1986) 
and Taozichong Formation (Hua et al., 2004) 
of South China. Like the specimens from South 
China, the Mount Dunfee specimens occur as 
compressed cylinders with densely spaced, 
transverse rings that appear to be articulated by 
a very thin membrane (Figs. 2A and 2B). Cai 
et al. (2011a) pointed to this feature as a way 
of distinguishing Gaojiashania from the late 
Ediacaran ribbon-shaped fossil Shaanxilithes 
ningqiangensis that is composed of serially 
arranged discoidal units (Meyer et al., 2012). 
However, more recently, Tarhan et al. (2014) 
interpreted the transverse ridges of Shaanxil-
ithes specimens from India as representing ana-
tomical wall thickenings of a tubular organism. 
On the basis of morphological characteristics, 
we classify the Mount Dunfee fossils as Gaoji-
ashania, but acknowledge that these two fossil 
genera could be the same organism.

Three specimens of an additional annulated 
tubular taxon, which differ in size and morphol-
ogy from Gaojiashania, also occur in the Dun-
fee Member assemblage. These specimens are 
characterized by a narrower conical termina-
tion and are similar in size and morphology to 
Wutubus annularis specimens from the Shiban-
tan Member (correlative with the Gaojiashan 
Member) of the Dengying Formation of South 
China (Chen et al., 2014) (Fig. 2C).

Fossil Assemblage in the Esmeralda 
Member of the Deep Spring Formation

The upper of the two fossiliferous horizons 
(Fig. 1C) at Mount Dunfee occurs in the middle 
part of the Esmeralda Member of the Deep 

Spring Formation in shale and siltstone beds 
between microbial horizons B and C (Oliver and 
Rowland, 2002). These fossils consist of nar-
row conical tubes with transverse annulations 
(Figs. 3A and 3B). The diameter of these tubular 
fossils is ~1 mm and the length of articulated 
specimens ranges from 0.5 to 3 cm. Cross-sec-
tions of the fossils are circular, and the narrow 
end of these fossils is tapered and closed (Fig. 
3A). Non-uniform curvature is present in some 
of these fossils, and many of the specimens 
are characterized by funnel-in-funnel structure 
that is characteristic of the family Cloudinidae 
(Figs. 3A and 3B). These fossils are commonly 
stained orange or red, in contrast to the black, 
brown, or green matrix of the host siltstone and 

shale, most likely reflecting oxidation of a pyrite 
pseudomorph remnant of the original fossil wall. 
This same stratigraphic interval also contains the 
multicellular algae Elainabella deepspringensis 
(Rowland and Rodriguez, 2014).

Based on morphological similarity, we clas-
sify these annulated tubular fossils as Conotubus, 
which, like Gaojiashania, until now has been 
described only from the Gaojiashan Lagerstätte 
in South China (Cai et al., 2011a; Hua et al., 
2007). The pyritization of the Dunfee specimens 
is also similar to that of the Conotubus fossils 
in South China (Cai et al., 2012; Schiffbauer et 
al., 2014). Like Cloudina, Conotubus is char-
acterized by tubular morphology with nested 
cylindrical or funnel-shaped units, but what dis-
tinguishes the two genera is that Cloudina are 
interpreted to have been biomineralized (Grant, 
1990), whereas Conotubus are either weakly 
biomineralized or non-biomineralized (Hua et 
al., 2007). The combination of non-uniform 
bends and the high relief of some of the fossil 
specimens described herein (Fig. 3A) suggests 
that the original wall could have been lightly 
calcified or composed of a resistant biomolecule 
such as chitin. Due to similarities in morphology 
and interpreted epibenthic life mode, Conotubus 
has been interpreted as a potential evolutionary 
precursor to Cloudina (Cai et al., 2011b; Hua 
et al., 2007). The data presented here, however, 
establish an inverse biostratigraphic relation-
ship between Conotubus and Cloudina, in which 
Conotubus appears ~100 m above the LAD of 
Cloudina (Fig. 1C).

DISCUSSION
Two new, exceptionally preserved late Edia

caran body fossil assemblages at Mount Dunfee 
compose the only known Ediacaran Lagerstätten 
in the southwestern United States. Discovery of 
these fossil assemblages expands the biogeo-
graphic distributions and stratigraphic ranges 
of the tubular fossils Gaojiashania, Conotubus, 
and Wutubus, adding another late Ediacaran 
fossil locality to the global record, and spe-
cifically, one dominated by tubular metazoans. 
Furthermore, at Mount Dunfee, the biostrati-
graphic range of Gaojiashania overlaps with 
that of Cloudina, instead of occurring exclu-
sively below Cloudina as it does in South China 
(Cai et al., 2010).

The two competing models for the cause of 
the end-Ediacaran extinction—an exogenous 
shock to surface environments or more gradual 
biotic replacement of soft-bodied Ediacaran 
organisms (e.g., erniettomorphs, rangeomorphs) 
by tubular metazoans—are not mutually exclu-
sive, and earlier stages of biotic replacement 
could have preceded an ultimate extinction event. 
However, the data set presented here shows that 
the nadir of the d13C excursion, the LAD of Edia-
caran tubular fossils, and the FAD of T. pedum, 
which defines the Precambrian-Cambrian 
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Figure 3. Photographs of pyritized Conotu-
bus specimen from the Esmeralda Member 
of the Deep Spring Formation, Nevada, USA. 
A: Conotubus specimen that exhibits bending 
and high-relief preservation. B: High-resolu-
tion photograph of the same specimen that 
shows funnel-in-funnel structure.

Figure 2. Photographs of fossils from the lower Dunfee Member of the Deep Spring 
Formation, Nevada, USA. A: Cast of Gaojiashania specimen preserved in siltstone. B: 
Gaojiashania specimen that preserves inner and outer fossil walls. C: Elongate, taper-
ing, annulated fossils that we suggest should be assigned to the genus Wutubus. D: 
One of four vermicular-like body fossil specimens.
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boundary, all occur within ~100 m of stratigra-
phy. The large d13C excursion likely records a 
major perturbation to the carbon cycle through 
the addition of isotopically light carbon to the 
ocean-atmosphere system, and possibly concom-
itant acidification of the surface ocean. The data 
presented here represent the tightest relationship 
documented to date between the negative d13C 
excursion and biological turnover at the Edia-
caran-Cambrian boundary, consistent with an 
environmental disturbance eliminating the last 
of the Ediacaran biota and paving the way for 
the Cambrian radiation.
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