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Using the atmospheric structure from a 3D global radiation-hydrodanamic —  parameters Mol _ _ S
simulation of HD189733b [1], Figure 1, and the open-source Bayesian » | [ ] [senmon] To address clouds in our models, we implement a cloud parameterization inspired by the 1D cloud
Atmospheric Radiative Transfer (BART) code [2][3], Figure 3, we investigate the il quess [A;";ggf;;g’,“’J [ o J model of [9] and the analytical cloud profll_e shape by_[lO], Figure 7. Our cloud profile has three free
difference between the temperature structure produced with a 3D simulationand =5 F =~ ST ew parameters (q.. prop, He) that covers a variety of profile shapes observed — -
the best-fit 1D retrieved model. We explore how well the retrieved planet-  Aam ot ;t. il A and modeled for Solar System planets, brown dwarfs and exoplanets, ) i
averaged model matches realistically complex atmospheric structure and what [ anster ] in addition to a gray cloud model, Figure 8: ol
temperature-pressure profile is actually revealed by the retrieval. H_
" Figure 1: BART layout e (p) = 4« (lng - log ptop) ptop =P < Ppase Do
YRA' A where q. Is the condensate number fraction, g. is the condensate number | - ()
P T BAY fraction one scale height below the cloud top and H.. is the cloud profile
l shape factor. Figure 8: Cloud profile
oo Pyrat Bay [6] Is an open-source retrieval framework based on the We calculate the cloud base as an intersection between our T-P profile and the species vapor
Figure 1: T-P profiles of the HD 189733b dayside produced Figure 2: Dayside-integrated emission BART code [2] [3], Figure 1. We rewrote the Complex ObjECt-Oriented pressure curve, Figure 9. —_—

core of the BART code from C to Python, making the new
framework simpler to debug, edit, and built upon. The code is user
and developer friendly, accompanied with detail documentation
https://pcubillos.github.io/pyratbay/. As BART, Pyrat Bay consists of s |
three self-consistent modules: Thermochemical Equilibrium logz r / T ST S e e e

] i i dn N Tg dc OH, R A A e N R [ vaos
Abundances (TEA) module https://www.github.com/dzesmin/TEA — = exp | — N = il e || lsoee

using [1], sampled on every 10 degrees latitude and longitude spectra of HD189733b
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The particle size distribution is described by a log-normal
distribution [9], adding an additional free parameter 7, to

our model, Figure 10:

Figure 2 shows the high-resolution dayside-integrated emergent model spectra
generated using the T-P profiles from Figure 1 in radiative transfer, and the
stellar grid model from [4]. To generate synthetic observations and uncertainties
of IWST (NIRISS, NIRCam, NIRSpec, and MIRI LRS), HST (WFC3 G141), and

P (bar)
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Spitzer (IRAC), we use a suit of observational tools by [5], Table 1. The software o : _ ar Nerd 2loa2o norm
accounts for the expected exposure, the realistic noise (photon, detector, read [7], radiative-transter module, and Multi-core Markov-chain Monte rvsm togog - §-9g
noise and dark current, observatory background, and residual systematic noise Carlo module (MC3) https://www.github.com/pcubilios/MCcubed _ _ _
components), and instrumental throughputs. [8]. The object-oriented structure and the driver routine based on a where 7, the geometric mean radius of the particles,
set of configuration files allow user to run the code in stages and call o, geometric mean radius set to 2. _
Instrument Mode Optics Native Sampling back variables with no additional editing. o _ _ Figure 9'_CIOUd extend and vapor pressure curves
resolution | (pixels) To calculate extinction due to the cloud particles, we use Mie scattering
NIRISS Bright | GrR700XD | 1.0-2. 700 theory [9] [11] [12], which outputs scattering and absorption efficiencies S o = 107 fr"x\
NIRCam | Lwgrism | F3zaw2 | 25-3. 1700 Q..qt @aNd Q5 Of each condensate for the range of particle sizes and [ N =100/}
NIRCam | LWgrism | F444W | 3.9-5 1700 wavelengths. The cloud cross sections and extinction are calculated as: -
Interpolated Mie g 40
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pronounced features. The data with uncertainties are |:.. / RESULTS
then used as inputs for retrieval. In Figure 4, we show | .. | _—
data points and uncertainties for all instruments el ¥ / P o
together. _
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To compare the 3D T-P structure with the results from  Figure 4: Simulated data for CONTACT NI o Qe HZ// » ’
retrieval, we first included all synthetic data points and  JWST, HST, and Spitzer e / . e
uncertainties for JWST, HST and Spitzer together and e o ohae T R n O e
then we address each of them separately, Figure 5 and 6. Post-Doctoral £ESeuE Figure 12: H20 absorption  Figure 13: H20 condensates extinction efficiency Figure 14: Fe condensates cross sections
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Figure 5: JWST, HST, and Spitzer Figure 6 : HST and Spitzer Wavelength {um) Figure 16: HD209458 in transmission spectra

Figure 15: Earth in transmission spectra with and without H,O clouds with and without Fe clouds
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