2 items with the tag “time-of-flight mass spectrometer

  • Advancing Techniques for in Situ Analysis of Complex Organics
    NAI 2010 NASA Goddard Space Flight Center Annual Report

    Our research in laser mass spectrometry is part of the overall program of the Goddard Center for Astrobiology to investigate the origin and evolution of organics in planetary systems. Laser mass spectrometry is a technique that is used to determine the chemical composition of sample materials such as rocks, dust, ice, meteorites in the lab. It also may be miniaturized so it could fit on a robotic spacecraft to an asteroid, a comet, or even Mars. On such a mission it could be used to discover any organic compounds preserved there, which in turn would give us insight into how Earth got its starting inventory of organic compounds that were necessary for life. The technique uses a high-intensity laser to “zap” atoms and molecules directly off the surface of the sample. The mass spectrometer instantly captures these particles and provides data that allow us to determine their molecular weights, and therefore their chemical composition. Our recent work has been to understand the different kinds of spectra one obtains when analyzing complex samples that are analogs of Mars and other planetary bodies, such as phyllosilicate-bearing rocks that have been identified on Mars and may indicate past conditions where life could have developed in the presence of water. We also have been improving the instrument to better detect certain kinds of organic compounds in such complex rocks, such as to selectively ionize certain hydrocarbons and simplify data analysis, and to create chemical maps of the sample surface.

    ROADMAP OBJECTIVES: 2.1 2.2
  • Advancing Techniques for in Situ Analysis of Complex Organics
    NAI 2012 NASA Goddard Space Flight Center Annual Report

    The overall objective of the line of work associated with technique and protocol development using laser mass spectrometry (MS) is to develop protocols for analysis of complex, nonvolatile organic molecules, such as those that might be found at Mars, Titan, comets, and other planetary bodies, with limited chemical sample manipulation, preparation, processing (as may be required by flight missions). The GCA laser MS effort is complementary to both (i) instrument development work supported by NASA programs such as ASTID, to forward the design and testing of new prototype spaceflight hardware, and (ii) ongoing research and development within Theme 4 of the GCA, concerning analytical chemical sample analysis as well as across GCA (particularly with Theme 3) to define combined analysis techniques that may affect future mission design. There are additionally aspects of this effort that relate to understanding synthetic pathways for certain complex organics in planetary environments.

    ROADMAP OBJECTIVES: None Selected