4 items with the tag “tidal heating

  • Planetary Surface and Interior Models and SuperEarths
    NAI 2009 VPL at University of Washington Annual Report

    In this project, we model the processes that continually reshape the interiors and the surfaces of terrestrial (rocky) planets. The models we develop and use give us insight into how these processes (e.g. weathering, volcanism, and plate tectonics) affect a planet’s habitability as the planet evolves. In addition to Earth- and Mars-like planets, we now seek to model two sorts of planets not observed in our Solar System: 1) “super-Earths” (rocky planets up to 10 times as massive as Earth) and 2) planets so close to their star that the tides actually heat the interior of the planet.

    ROADMAP OBJECTIVES: 1.1 1.2 4.1 5.2 6.1
  • Planetary Surface and Interior Models and SuperEarths
    NAI 2010 VPL at University of Washington Annual Report

    We use computer models to simulate the evolution of the interior and the surface of real and hypothetical planets around other stars. Our goal is to work out what sorts of initial characteristics are most likely to contribute to making a planet habitable in the long run. Observations in our own Solar System show us that water and other essential materials are continuously consumed via weathering (and other processes) and must be replenished from the planet’s interior via volcanic activity to maintain a biosphere. The surface models we are developing will be used to predict how gases and other materials will be trapped through weathering over time. Our interior models are designed to predict how much and what sort of materials will come to a planet’s surface through volcanic activity throughout its history.

    ROADMAP OBJECTIVES: 1.1 1.2 4.1 5.2 6.1
  • Planetary Surface and Interior Models and SuperEarths
    NAI 2011 VPL at University of Washington Annual Report

    We use computer models to simulate the evolution of the interior and the surface of real and hypothetical planets around other stars. Our goal is to work out what sorts of initial characteristics are most likely to contribute to making a planet habitable in the long run. Observations in our own Solar System show us that water and other essential materials are continuously consumed via weathering (and other processes) and must be replenished from the planet’s interior via volcanic activity to maintain a biosphere. The surface models we are developing will be used to predict how gases and other materials will be trapped through weathering over time. Our interior models are designed to predict how much and what sort of materials will come to a planet’s surface through volcanic activity throughout its history.

    ROADMAP OBJECTIVES: 1.1 1.2 4.1 5.2 6.1
  • Planetary Surface and Interior Models and SuperEarths
    NAI 2012 VPL at University of Washington Annual Report

    We use computer models to simulate the evolution of the interior and the surface of real and hypothetical planets around other stars. Our goal is to work out what sorts of initial characteristics are most likely to contribute to making a planet habitable in the long run. Observations in our own Solar System show us that water and other essential materials are continuously consumed via weathering (and other processes) and must be replenished from the planet’s interior via volcanic activity to maintain a biosphere. The surface models we are developing will be used to predict how gases and other materials will be trapped through weathering over time. Our interior models are designed to predict how much and what sort of materials will come to a planet’s surface through volcanic activity throughout its history.

    ROADMAP OBJECTIVES: 1.1 1.2 4.1 5.2 6.1