2 items with the tag “resurrection

  • Experimental Evolution and Genomic Analysis of an E. Coli Containing a Resurrected Ancestral Gene
    NAI 2013 Georgia Institute of Technology Annual Report

    In order to study the historical pathways and modern mechanisms of protein evolution in a complex cellular environment, we combined ancestral sequence reconstruction with experimental evolution. Our first goal was to identify how ancestral states of a protein effect cellular behavior by directly engineering an ancient gene inside a modern genome. We could then identify the evolutionary steps of this organism harboring the ancient gene by subjecting it to laboratory evolution, and directly monitoring the resulting changes within the integrated ancient gene as well as the rest of the host genome.

    ROADMAP OBJECTIVES: 3.4 4.1 5.1 5.2 6.1 6.2
  • Resurrection of an Ancestral Peptidyl Transferase
    NAI 2013 Georgia Institute of Technology Annual Report

    Ancient components of the ribosome, inferred from a consensus of previous work, were constructed in silico, in vitro, and in vivo. The resulting model of the ancestral ribosome incorporates about 20% of the extant 23S rRNA and fragments of four ribosomal proteins. We confirmed that the ancestral rRNA can: (i) assume canonical 23S rRNA-like secondary structure, (ii) assume canonical tertiary structure, and (iii) form native complexes with ribosomal protein fragments. We call the assembled a-RNA and rPeptide fragments the aPTC. We are currently focusing on characterizing the catalytic activity of the a-PTC.