24 items with the tag “planet formation

  • NAI Research Highlights

    Planets Around the Stars

    July 25, 2006
  • Feature Stories

    When Worlds Collide

    September 15, 2011
  • Project 3: The Origin, Evolution, and Volatile Inventories of Terrestrial Planets
    NAI 2009 Carnegie Institution of Washington Annual Report

    The origin and Sustenance of life on Earth strongly depends on the fact that volatile elements H-C-O-N where retained in sufficient abundance to sustain an ocean-atmosphere. The research in this project involves studies of how terrestrial planets form, why differences exist among the terrestrial planets, how volatiles behave deep within the Earth, and how volatiles and life influence the large and small scale composition of the near surface Earth.

    ROADMAP OBJECTIVES: 1.1 3.1 4.1
  • Biosignatures in Extraterrestrial Settings
    NAI 2009 Pennsylvania State University Annual Report

    This project looks at the evolution of the composition of gases in the cold disk from which planets form; the evolution of the atmosphere after planet formation, in particular, the role of trace gases in the early greenhouse effect; and, some aspects of the the formation and later dynamical evolution of extrasolar planets.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 4.1
  • Planet Formation and Dynamical Modeling
    NAI 2009 VPL at University of Washington Annual Report

    We examine how various formation processes may impact the potential development of an habitable world, and how subsequent orbital evolution can affect habitability. We explore these phenomena through numerical simulations that allow us to determine the compositions, orbits, and sometimes the internal properties of terrestrial in the Solar System and beyond.

    ROADMAP OBJECTIVES: 1.1 3.1 4.3
  • Delivery of Volatiles to Terrestrial Planets
    NAI 2009 VPL at University of Washington Annual Report

    Terrestrial planets are too small to trap gas from the circumstellar disk in which they formed and so must be built from solid materials (rock and ices). In this task, we explore how and when Earth, Mars and other potentially-habitable worlds accumulated water and organic carbon. The main challenge is that water and organic carbon are relatively volatile elements (compared to rock and metal). Therefore, during the period of time in which solids condensed at the current position of Earth, water and carbon would have been mainly in the gas phase. Getting these materials to earth required that inward transportation of material from further out in the disk.

    ROADMAP OBJECTIVES: 1.1 3.1 4.1 4.3
  • Biosignatures in Extraterrestrial Settings
    NAI 2010 Pennsylvania State University Annual Report

    The team will investigate the abundance of sulfur gases and elucidate how these gases can be expected to evolve with time on young terrestrial planets. They will continue studies of planet formation in the presence of migration and model radial transport of volatiles in young planetary systems, and will be involved with searches for M star planetary companions and planets around K-giant stars.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 4.1 4.3 6.2 7.1
  • Project 3: The Origin, Evolution, and Volatile Inventories of Terrestrial Planets
    NAI 2010 Carnegie Institution of Washington Annual Report

    The origin and Sustenance of life on Earth strongly depends on the fact that volatile elements H-C-O-N where retained in sufficient abundance to sustain an ocean-atmosphere. The research in this project involves studies of how terrestrial planets form, why differences exist among the terrestrial planets, how volatiles behave deep within the Earth, and how volatiles and life influence the large and small scale composition of the near surface Earth.

    ROADMAP OBJECTIVES: 1.1 3.1 4.1
  • Formation of Terrestrial Planets
    NAI 2010 VPL at University of Washington Annual Report

    This past year VPL has continued to explore key unknowns in our understanding of terrestrial planet formation. We have performed supercomputer simulations of the early formation of the Earth, and found that it can proceed more quickly than previously appreciated and suggests terrestrial exoplanets may be common. We also showed how the shape of belts of asteroids in the outer reaches of planetary systems, which can be directly observable, provide clues to the layout of the interior planets, which are often not observable.

    ROADMAP OBJECTIVES: 1.1 1.2 3.1 4.3
  • Delivery of Volatiles to Terrestrial Planets
    NAI 2010 VPL at University of Washington Annual Report

    Habitable planets are too small to trap gases from the planet-forming disk. Their oceans and atmospheres must originate in the planetesimals from which the planet is built. In this task, we explore how, when, and from where Earth, Mars and habitable worlds around other stars can accumulate water and organic carbon. The main challenge is that water and organic carbon are relatively volatile elements (compared to rock and metal). Therefore, during the period of time in which solids condensed at the current position of Earth, water and carbon would have been mainly in the gas phase. Getting these materials to the habitable zone requires that material from further out in the disk would be transported inward. Another challenge is that upon reaching the Earth, both large and small suffer severe heating during atmospheric entry. We also have investigated the fate of these compounds upon release into the atmosphere.

    ROADMAP OBJECTIVES: 1.1 3.1 4.1 4.3
  • Solar System Dynamics
    NAI 2011 University of Hawaii, Manoa Annual Report

    Understanding how the planets accumulated requires a detailed investigation of the dynamical pro-cesses that were occurring at the time of accretion. UHNAI team members are using dynamical sim-ulations involving many particles to help interpret some of the observable aspects of the modern solar system.

    ROADMAP OBJECTIVES: 1.1
  • Biosignatures in Extraterrestrial Settings
    NAI 2011 Pennsylvania State University Annual Report

    The focus of this project is to explore indicators of life outside of Earth, both within the Solar System and on extrasolar planets. The work includes studies of the chemistry and composition of the Solar System, and the past history of conceivable sites for life in the Solar System. We also look for habitable planets outside the Solar System; work on developing new techniques to find and observe potentially habitable planets; and model the dynamics, evolution and current status of a variety of extrasolar planets.

    ROADMAP OBJECTIVES: 1.1 1.2 2.1 2.2 4.1 4.3 6.2 7.1 7.2
  • Observations of the Water and Organic Content of Protoplanetary Disks and Comets
    NAI 2011 NASA Goddard Space Flight Center Annual Report

    The Blake group has been carrying out joint observational and laboratory program with NAI node scientists on the water and simple organic chemistry in the protoplanetary disk analogs of the solar nebula and in comets. It has been a highly productive year. The major overview papers outlining the results from our extensive (>100 disks) Spitzer IRS survey of the molecular emission from the terrestrial planet forming region are now published, and the initial follow-up work with GSFC scientists on the high spectral resolution ground based observations of such emission has just been submitted for publication. We have probed the outer disk’s water emission with the Herschel HIFI instrument, and also measured the D/H ratio in a Jupiter Family Comet for the first time with Herschel – finding a value consistent with that in the Earth’s oceans. Now that ALMA is ramping up toward operations, we look forward to high angular resolution observations of simple organics in the outer regions of disks and comets over the coming years. The full suite of results will permit the first detailed examination of the radial water and gas phase organic chemistry in planet-forming environments.

    ROADMAP OBJECTIVES: 1.1 1.2 3.1
  • Project 3: The Origin, Evolution, and Volatile Inventories of Terrestrial Planets
    NAI 2011 Carnegie Institution of Washington Annual Report

    This research project brings together a large team of scientists with a unified goal understanding the origin and evolution of volatiles (C, H, O, and N) in planetary interiors. It includes a theoretical study of planet formation with focus of addressing the abundance of volatiles in objects that ultimately combine to form the terrestrial planets. The project gains from information being currently revealed through the NASA Messenger mission in orbit around Mercury. The project has an experimental component that focuses on studying volatiles deep in planetary interiors using ultra-high pressure devices and molecular spectroscopy for species interrogation. Finally, it includes a systematic study of the chemistry of mineral inclusions in diamonds, where diamond serves to trap minerals in a natural high pressure container. These studies allow CIW NAI scientists probe the chemistry of Earth’s deep mantle and help reveal how Earth’s plate tectonics may have started.

    ROADMAP OBJECTIVES: 1.1 3.1 4.1
  • Delivery of Volatiles to Terrestrial Planets
    NAI 2011 VPL at University of Washington Annual Report

    This project uses computer models and laboratory work to better understand how volatile materials that are important for life, like water, methane, and other organic molecules, are delivered to terrestrial planets. Habitable planets are too small to gravitationally trap these volatiles directly from the gas disk from which they formed, and instead they must be delivered as solids or ices at the time of the planet’s formation, or ongoing as the planet evolves. These trapped volatiles are eventually released to form our oceans and atmosphere. In this task we use computer models of planet formation and migration to understand how the asteroid belt, which is believed to be the source of the Earth’s oceans, was formed. We also use models to understand what happens to meteoritic material as it enters a planet’s atmosphere, especially where it gets deposited in the atmosphere, what happens to it chemically, and how it interacts with the light from the parent star. .

    ROADMAP OBJECTIVES: 1.1 3.1 4.1 4.3
  • Progress Report From G. Blake - CIT
    NAI 2012 NASA Goddard Space Flight Center Annual Report

    The Blake group has been carrying out joint observational and laboratory program with NAI node scientists on the water and simple organic chemistry in the protoplanetary disk analogs of the solar nebula and in comets. Scientific results continue to flow at a rapid clip. We have followed up our major overview papers outlining the results from our extensive (>100 disks) Spitzer IRS survey of the molecular emission from the terrestrial planet forming region with follow-up work with GSFC scientists on the high spectral resolution ground-based observations of such emission and that from cometary comae (and possible non-transiting exoplanets) using the Keck telescope and the VLT. We have measured the angular scale of the disk emission, and discovered a new transitional disk class characterized by a wide angle molecular wind. We have probed the outer disk’s water emission with the Herschel HIFI instrument, and also measured the (D/H)water ratio in a Jupiter Family Comet for the first time with Herschel – finding a value consistent with that in the Earth’s oceans. Our first Cycle 0 ALMA data are now in hand, and beautifully demonstrate the high angular resolution observations of simple organics in the outer regions of disks and comets that will become possible over the coming years. The full suite of results will permit the first detailed examination of the radial water and gas phase organic chemistry in planet-forming environments.

    ROADMAP OBJECTIVES: 1.1 1.2 3.1 7.2
< prev next >
1 2