6 items with the tag “perchlorate

  • Feature Stories

    Viking Results Revisited

    September 4, 2010
  • Project 5B: Detection of Biosignatures in Extreme Environments, Analogs for Mars
    NAI 2010 University of Wisconsin Annual Report

    The planet Mars may have been warmer in the past and at one time probably had an acidic, wet environment but currently it is cold and dry. Past conditions and maybe even present ones, although extreme, could support microbial life and we have investigated life in two extreme analog environments. The Río Tinto is an acid river is Spain where from an airborne remote survey we have monitored the progress of a metabolic process in which iron, rather than carbon, is oxidized by bacteria. At the site of a former munitions factory in Israel we have shown that bacteria can live off the chemical energy of the chemical compound perchlorate (recently found on Mars), despite adverse conditions and negligible amounts of water in the environment.

    ROADMAP OBJECTIVES: 2.1 7.1
  • Advancing Methods for the Analyses of Organics Molecules in Sediments
    NAI 2011 NASA Goddard Space Flight Center Annual Report

    Eigenbrode’s astrobiological research focuses on understanding the formation and preservation of organic and isotopic sedimentary records of ancient Earth, Mars, and icy bodies. To this end, and as part of GCA’s Theme IV effort, Eigenbrode seeks to overcome sampling and analytical challenges associated with organic analyses of astrobiology relevant samples with modification and development of contamination tracking, sampling, and analytical methods (primarily GCMS) that improve the recovery of meaningful observations and provide protocol guidance for future astrobiological missions. Advances have been made in five sub-studies and manuscript writing is in progress. Studies include: 1 & 2. Advancing protocols for organic molecular studies of iron-oxide rich sediments and sediments laden with perchlorate, 3. Carbon Isotopic Records of the Neoarchean, 4. Solid-phase sorbtive extraction of organic molecules in glacial ice, and 5. Amino acid composition of glacial ice.

    ROADMAP OBJECTIVES: 2.1 4.1 5.1 5.2 5.3 6.1
  • Advancing Methods for the Analyses of Organics Molecules in Sediments
    NAI 2012 NASA Goddard Space Flight Center Annual Report

    Eigenbrode’s astrobiological research focuses on understanding the formation and preservation of organic and isotopic sedimentary records of ancient Earth, Mars, and icy bodies. To this end, and as part of GCA’s Theme IV effort, Eigenbrode seeks to overcome sampling and analytical challenges associated with organic analyses of astrobiology relevant samples with modification and development of contamination tracking, sampling, and analytical methods (primarily GCMS) that improve the recovery of meaningful observations and provide protocol guidance for future astrobiological missions.

    ROADMAP OBJECTIVES: 2.1 4.1 7.1