8 items with the tag “microbial communities

  • Stromatolites in the Desert: Analogs to Other Worlds
    NAI 2009 VPL at University of Washington Annual Report

    Cuatro Cienegas Basin, a desert oasis in the Chihuahua desert of central Mexico, provides a proxy for an earlier time in Earth’s history when microbes dominated the scenery. The basin hosts active, growing stomatolites, communities of microbes that are covered in carbonates, principally through the action of metabolic processes within the community. Researchers from several NAI teams are actively researching and creating experimental procedures to understand small scale and large scale evolution within these communities, using tools from biology, geology, and astronomy.

    ROADMAP OBJECTIVES: 4.1 4.2 5.2 5.3 6.1 6.2
  • Stromatolites in the Desert: Analogs to Other Worlds
    NAI 2010 VPL at University of Washington Annual Report

    In this task biologists go to field sites in Mexico to better understand the environmental effects on growth rates for freshwater stromatolites. Stromatolites are microbial mat communities that have the ability to calcify under certain conditions. They are believed to be an ancient form of life, that may have dominated the planet’s biosphere more than 2 billion years ago. Our work focuses on understanding these communities as a means of characterizing their metabolisms and gas outputs, for use in planetary models of ancient environments.

    ROADMAP OBJECTIVES: 4.1 4.2 5.2 5.3 6.1 6.2
  • Stromatolites in the Desert: Analogs to Other Worlds
    NAI 2011 VPL at University of Washington Annual Report

    In this task biologists go to field sites in Mexico to better understand the environmental effects on growth rates for freshwater stromatolites. Stromatolites are microbial mat communities that have the ability to calcify under certain conditions. They are believed to be an ancient form of life, that may have dominated the planet’s biosphere more than 2 billion years ago. Our work focuses on understanding these communities as a means of characterizing their metabolisms and gas outputs, for use in planetary models of ancient environments.

    ROADMAP OBJECTIVES: 4.1 4.2 5.2 5.3 6.1 6.2
  • Stoichiometry of Life - Task 2c - Field Studies - Other
    NAI 2012 Arizona State University Annual Report

    We continued analyses of organic matter in samples of porewaters from a deep ocean hydrothermal mound; concluded a study on element acquisition by biological soil crusts, and initiated a new study that may shed light on a recent hypothesis that floating pumice may have been a site for the origin of life. In this new study, the eruption of the Puyehue / Cordon Caulle volcano on 4 June 2011 near Bariloche, Argentina, provided a unique opportunity to investigate floating pumice as a unique habitat for microbial life. To assess this, we sampled floating pumice from various regional lakes to assess the make-up of the associated microbial communities using genomic techniques and to evaluate the use of key elements (nitrogen, phosphorus) by these microbes using chemical and isotopic methods.

    ROADMAP OBJECTIVES: 4.1 5.2 5.3 6.1
  • Stromatolites in the Desert: Analogs to Other Worlds
    NAI 2012 VPL at University of Washington Annual Report

    In this task biologists go to field sites in Mexico to better understand the environmental effects on growth rates for freshwater stromatolites. Stromatolites are microbial mat communities that have the ability to calcify under certain conditions. They are believed to be an ancient form of life, that may have dominated the planet’s biosphere more than 2 billion years ago. Our work focuses on understanding these communities as a means of characterizing their metabolisms and gas outputs, for use in planetary models of ancient environments.

    ROADMAP OBJECTIVES: 4.1 4.2 5.2 5.3 6.1 6.2
  • Exobiology Research Highlights

    Life Beneath Glacial Ice

    June 14, 2013